FT. DETRICK BOILER PLANT STUDY EEAP - DACA01-94-D-003 #### FINAL REPORT VOL 1 of 2 Prepared by DTIC QUALITY INSPECTED 2 Entech Engineering, Inc. Reading, Pennsylvania December 1995 19971017 073 #### DEPARTMENT OF THE ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005 REPLY TO ATTENTION OF: TR-I Library 17 Sep 1997 Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release. Marie Wakeffeld, Librarian Engineering #### FT. DETRICK BOILER/STEAM SYSTEM STUDY #### **Table of Contents** | <u>SEC</u> | <u>TION</u> | TITLE | <u> E</u> | |------------|-------------|--|-----------| | 1.0 | EXE | CUTIVE SUMMARY/SCHEDULE 1-1 through 1 | 1-8 | | | 1.1 | Introduction | 1-1 | | | 1.2 | General Findings | 1-5 | | 2.0 | MET | HODOLOGY | -23 | | | 2.1 | General | 2-1 | | | 2.2 | Kickoff Meeting | 2-1 | | | 2.3 | Gather Existing Data | 2-2 | | | 2.4 | Site Inspection | 2-2 | | | 2.5 | | 2-4 | | | | 2.5.1 General | 2-4 | | | | 2.5.2 Steam Use Model | | | | | 2.5.3 Fuel Use Model | 2-5 | | | | 2.5.4 Lighting Model | 2-5 | | | | 2.5.5 Electric Model | | | | | 2.5.6 Heating Degree Days | -12 | | | | 2.5.7 mmBtu / Unit | | | | 2.6 | Energy Conservation Opportunities (ECO's) 2- | -15 | | | | 2.6.1 Existing Conditions | | | | | 2.6.2 Proposed Condition Description 2- | | | | | 2.6.3 Capital Cost Estimates | | | | | 2.6.4 Cost Savings | | | | | 2.6.5 Discussion | | | | | 2.6.6 Life Cycle Cost Analysis Summary 2- | | | | 2.7 | Draft Report/Client Review/Final Report | | #### **Table of Contents Continued** | SEC | TION | TITLE | <u>P</u> . | <u>AGE</u> | |-----|------|--|------------|------------| | 3.0 | FAC: | ILITY DESCRIPTIONS | cough | 3-14 | | • | 3.1 | General | | 3-1 | | | 3.2 | Boiler Plant | | 3-2 | | | | 3.2.1 Description of Existing Boilers | | 3-3 | | | | 3.2.2 General System Specifics | | 3-4 | | | | 3.2.3 Common Systems | | 3-5 | | | | 3.2.4 Support Equipment | | | | | | 3.2.5 Treatment of Boiler Feedwater | | 3-5 | | | | 3.2.6 Deaerators | | 3-6 | | | | 3.2.7 Stack Economizers | | 3-6 | | | | 3.2.8 Blowdown and Heat Recovery | | 3-7 | | | | 3.2.9 Natural Gas Supply | | 3-7 | | | | 3.2.10 Oil Storage and Transfer | | 3-7 | | | 3.3 | Steam Distribution | | 3-10 | | | 3.4 | Buildings | | 3-12 | | 4.0 | BILI | LING HISTORIES | rough | 4-31 | | | 4.1 | General | _ | | | | 4.2 | Natural Gas | | | | | 4.3 | Fuel Oil | | 4-12 | | | 4.4 | Steam Production | | 4-18 | | | 4.5 | Electricity | | 4-22 | | | | 4.5.1 Incremental Cost | | 4-25 | | | | 4.5.2 Electric Usage | | 4-26 | | | | 4.5.3 Monthly Demand | | 4-26 | | | 4.6 | Energy Cost and Usage Summary | | 4-29 | | | | 4.6.1 General | | 4-29 | | | | 4.6.2 Total Energy Costs and Energy Incremental Cost | | 4-29 | | | | 4.6.3 Incremental Energy Cost for Steam | | | | | | 4.6.4 Total Energy (mmBtu) | | 4-31 | | | | | | | #### **Table of Contents Continued** | SEC. | <u> </u> | TITLE | <u>PAGE</u> | |------|----------|--|----------------| | 5.0 | ENE | RGY MODELS | h 5-6 1 | | | 5.1 | General | | | | 5.2 | Space Heating | | | | 5.3 | Reheats | | | | 5.4 | Humidification | | | | 5.5 | Domestic Hot Water | | | | 5.6 | Autoclaves/Cage Washers | | | | 5.7 | Sewage Decontamination | | | | 5.8 | Other Process Steam Loads | | | | 5.9 | Boiler Plant Energy Use | | | | 5.10 | Steam Distribution Losses | | | | 5.11 | Steam Use Model | | | | 5.12 | | | | | 5.13 | Lighting Model | | | | 5.14 | Electric Model | | | 6.0 | Ener | gy Conservation Opportunities (ECOs) 6-1 through | 6-154 | | 0.0 | 6.1 | General | | | | 6.2 | ECO's List | | | | 6.3 | (B) Boiler Systems/Controls | | | | 0.0 | ECO B-1 Feedwater Treatment | | | | | ECO B-2 Stack Economizers | | | | | ECO B-3 Automatic Blowdown Controls | | | | | ECO B-4 New Boilers | | | | | ECO B-5 Oxygen (O ₂)Trim Controls on Boilers | | | | | ECO B-6 Air Preheaters | | | | | ECO B-7 Supply Combustion Air from Ceiling | | | | | ECO B-9 New Steam Metering | | | | 6.4 | (O) Operation | | | | | ECO O-1 Shut off Standby Boilers | | | | | ECO O-2 Improve Boiler Sequencing | | | | | ECO O-3 Summer Shutdown of Boiler Plant | | | | | ECO O-4 Replace Less Efficient Boilers | | | | | ECO O-5 Fuel Usage Election Plan | | | | | ECO O-6 Alternate Fuels (Natural Gas Brokering) | | #### **Table of Contents Continued** | SEC'I | ION | TITLE | <u>PAGE</u> | |-------|-----|--|-------------| | | 6.5 | (S) Site | 6-79 | | | | ECO S-1 Cogeneration | . 6-80 | | | | ECO S-2 New Boiler Plant | 6-85 | | | | ECO S-3 Steam Pressure Reduction | 6-92 | | | | ECO S-4 Improve Condensate Return | 6-97 | | | | ECO S-5 Correct Sizing of Traps (Deleted from Scope) | N/A | | | | ECO S-6 Steam and Condensate Metering | 6-104 | | | | ECO S-7 Insulate Steam and Condensate Lines | 6-109 | | | | ECO S-8 Replace Steam Humidification | . 6-117 | | | | ECO S-9 Sewage Storage Tank Insulation | 6-121 | | | | ECO S-10 Reduce Contaminated Sewage | 6-125 | | | 6.6 | (P) Plant | | | | | ECO P-1 Turbine Drives on Feedwater Pumps | | | | | ECO P-2 Efficient Motors | | | | | ECO P-3 Variable Speed Drives | . 6-139 | | | 6.7 | (L) Lighting | | | | | ECO L-1 Boiler Plant Lighting | | | | | ECO L-2 Exit Signs to Fluorescent | . 6-151 | | 7.0 | CON | CLUSION 7-1 throu | ugh 7-9 | | | 7.1 | General | . 7-1 | | | 7.2 | Recommended ECOs | 7-5 | | | 7.3 | Non-Recommended ECOs | 7-7 | | 8.0 | ATT | ACHMENTS | | | | 8.1 | Natural Gas Bills and Sale Agreement | | | | 8.2 | Electric Bills and Rate Structure | | | | 8.3 | Incremental Cost Calculation | | | | 8.4 | Space Heat Calculation | | | | 8.5 | ECO Backup Data and Calculations | | | | 8.6 | Combustion Test | | | | 8.7 | Project Scope | | | | 8.8 | Steam Distribution Map | | #### 1.0 EXECUTIVE SUMMARY #### 1.1 General The following report outlines the findings of an energy study of the Boiler Plant at Fort Detrick in Frederick, Maryland. Entech Engineering Inc. has prepared this study as part of the Energy Engineering Analysis Program (EEAP). Originally the scope of the study was to cover only the Boiler Plant. However, the steam distribution system was added to the scope because of the significant interrelationship between the boiler plant and the distribution system. Steam usage inside the buildings was not part of this study, although steam usage estimates were made for each building in order to prepare a comprehensive steam use model. A substantial part of the work in this study was to prepare fuel and steam use models. These models simulated on a monthly basis how energy is used for major heating loads. For example, calculations were made to estimate the steam used in each building for space heating, water heating, sterilizers, decontamination, etc.. Also included in the model is the amount of losses for such things as boiler efficiency, heat loss from pipes, lost condensate, etc.. The developed steam and fuel use models were then balanced such that the model matched the actual steam production and fuel use on a monthly basis. The total energy usage in the Boiler Plant in 1994 is shown in the following table. Oil and natural gas costs are for the boilers, which supply heat to the total base. The electric usage is for only the equipment inside the Boiler Plant. The total cost for fuel is approximately \$3 million per year. Electric cost for the Boiler Plant is an additional \$50,000 per year. #### 1994 Energy Usage for Fort Detrick Boiler Plant | Energy | Energy Unit Total | mmBtu Total | Cost | |------------------------------|-------------------|-------------|--------------| | Natural Gas (\$3.53/mcf) | 656,537* | 676,233 | \$2,317,600* | | No. 6 Fuel Oil (\$0.42/gal) | 1,645,571 | 246,326 | \$691,100 | | Electric Demand (\$8.97/kW) | 2,416 | N/A | \$21,700 | | Electric Usage (\$0.024/kWh) | 1,345,600 | 4,592 | \$32,300 | ^{*} This is from the log data used for ECO evaluations. After the fuel use models were developed and balanced with the actual fuel bills, Energy Conservation Opportunities (ECOs) were identified for further analysis. In all, thirty (30) ECOs were identified by both Fort Detrick personnel and Entech. These ECOs and the results of our analyses are listed in Table 1.1.1 and are classified as follows: - B Boiler Plant - O Operations - S Steam System or site - P Boiler Plant - L Lighting ## Fort Detrick ECO List Table 1.1.1 | Table 1.1.1 | | | | | | | | | |-------------|--|-------------|-----------------------------|-----------------------------|------------------|--------------|--|--| | No. | Description | Const. Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings (mmBtu) | | | B-1 | Feedwater
Treatment | N/A | N/A | N/A | N/A | N/A | N/A | | | B-2 | Stack
Economizers | \$253,000 | \$16,500 | (\$10,000) | 34 | 0.85 | 1485 (No.6 Oil)
3899 (Nat. Gas) | | | B-3 | Automatic
Blowdown
Controls | \$145,000 | \$9,800 | \$3,000 | 11 | 1.7 | 2860 (Nat. Gas) | | | B-4 | New Burners | \$200,000 | \$14,900 | \$0 | 13 | 1.5 | 2521 (No.6 Oil)
2299 (Nat. Gas) | | | B-5 | Oxygen Trim
Controls on
Boiler | \$75,000 | \$18,000 | (\$1,000) | 4.4 | 4.8 | 5248 (Nat. Gas) | | | B-6 | Air Preheaters | \$1,096,000 | \$34,100 | (\$10,000) | 45 | 0.60 | -1520 (kWh) -6979 (\$kW)
6336 (No.6 Oil)
9929 (Nat .Gas) | | | B-7 | Supply
Combustion Air
from Ceiling | \$58,000 | \$3,900 | (\$500) | 17 | 1.5 | -199 (kWh) -870 (\$Kw)
882 (No.6 Oil)
987 (Nat. Gas) | | | B-8 | Update Instruments & Controls | N/A | N/A | N/A | N/A | N/A | N/A | | | B-9 | New Steam
Metering | \$54,000 | \$950 | (\$1,000) | ∞ | 0.09 | 271 (Nat.
Gas) | | | O-1 | Shut off Standby
Boilers | \$5,000 | \$87,700 | \$0 | 0.13 | 158 | 10995 (Nat. Gas) | | | O-2 | Improve Boiler
Sequencing | \$5,000 | \$41,000 | \$0 | 0.12 | 171 | -2273 (No.6 Oil)
13655 (Nat. Gas) | | | O-3 | Summer
Shutdown of
Boiler Plant | \$4,058,000 | (\$13,500) | (\$25,000) | ∞ | 0.63 | -17259 (kWh)
-12881 (\$kW)
-133250 (No.2 Oil)
-78 (No.6 Oil)
224817 (Nat. Gas) | | | 0-4 | Replace Less
Efficient Boilers | \$1,772,000 | \$121,000 | \$0 | 14.9 | 1.4 | 15031 (No.6 Oil)
22410 (Nat. Gas) | | | O-5 | Fuel Use
Selection Plan | \$5,000 | \$215,000 | (\$10,000) | 0.02 | 1019 | -271508 (No.6 Oil)
284831 (Nat. Gas) | | | No. | Description | Const. Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings (mmBtu) | |------|---|--------------|-----------------------------|-----------------------------|------------------|--------------|--| | O-6 | Alternate Fuels | \$5,000 | \$131,000 | \$0 | 0.04 | 549 | 38192 (Nat. Gas)
*simulated | | S-1 | Cogeneration | \$10,045,000 | \$735,800 | (\$457,000) | 13.7 | 0.63 | 199046 (kWh)
719304 (\$kW)
270118 (Nat. Gas) | | S-2 | New Boiler Plant | \$4,304,000 | \$162,800 | (\$200,000) | ∞ | 0.09 | 18325 (No.6 Oil)
31888 (Nat. Gas) | | S-3 | Steam Pressure
Reduction | \$112,000 | \$39,700 | \$0 | 2.8 | 7.4 | 11505 (Nat. Gas) | | S-4 | Improve
Condensate
Return | \$321,000 | \$43,500 | \$0 | 7.4 | 2.2 | 12696 (Nat. Gas) | | S-5 | Correct Sizing of
Traps (Deleted) | N/A | N/A | N/A | N/A | N/A | N/A | | S-6 | Steam &
Condensate
Metering | \$247,000 | \$14,500 | (\$15,000) | ∞ | 0.33 | 4217 (Nat. Gas) | | S-7 | Insulate Steam & Condensate Line | \$1,008,000 | \$184,700 | \$0 | 5.5 | 2.9 | 53264 (Nat. Gas) | | S-8 | Replace Steam
Humidification
Ultrasonic | \$87,000 | (\$1,000) | (\$2,000) | ∞ | -0.17 | 2132 (Nat. Gas)
-92 (kWh)
-834 (\$kW) | | S-9 | Sewage Storage
Tank Insulation | \$298,000 | \$7,300 | (\$1,000) | 47 | 0.46 | 108 (Nat. Gas) | | S-10 | Reduce
Contaminate
Sewage | \$373,000 | \$37,700 | \$0 | 9.9 | 2.1 | 11021 (Nat. Gas) | | P-1 | Turbine Drives
on Feedwater
Pumps | \$60,000 | \$4,000 | (\$1,000) | 30 | 0.10 | 715 (kWh)
3034 (\$kW)
-1339 (Nat. Gas) | | P-2 | Efficient Motors | \$22,500 | \$800 | \$0 | 29 | 0.54 | 75 (kWh) 332 (\$kW) | | P-3 | Variable Speed
Drives | \$133,000 | \$6,660 | (\$2,000) | 28 | 0.55 | 600 (kWh)
2458 (\$kW) | | L-Ì | Boiler Plant
Lighting | \$17,500 | \$600 | \$1,000 | 11 | 1.1 | 50 (kWh)
215 (\$kW) | | L-2 | Exit Sign to
Fluorescent | \$100 | \$11 | \$25 | 2.7 | 4.4 | 1 (kWh)
4 (\$kW) | #### 1.2 Conclusion In general, the Boiler Plant appears to be in good condition and maintained very well. The Boiler Plant operations are understood by the Boiler Plant personnel, who appear dedicated to operating the equipment in a quality manner. Boiler Plant operations impact only a portion of the energy usage. From our investigation there appeared to be less oversight on the steam distribution system, and how the steam is used inside the buildings. Energy conservation opportunities have been identified for the distribution system. Steam use inside the buildings was not part of the work scope for this study. In summary, a total of ten (10) Energy Conservation Opportunities (ECO) have been recommended for implementation out of the thirty (30) identified in this report. The ECOs were then categorized into one of five types of project. The five include: - 1) Recommended ECIP - 2) Recommended Non-ECIP O&M projects - 3) Recommended Non-ECIP LC/NC projects - 4) Recommended Non-ECIP General projects - 5) Non-feasible (listed as group in Section 7 only) The criteria used to place the ECOs into these categories is detailed in Section 7. Of those, only one is considered to be eligible for ECIP designation. That project, ECO S-10, assumes that contaminated sewage can be reduced by approximately 20%. Entech feels that process changes can probably be made to separate "clean sewage" from "contaminated sewage". This could be done by adding sewage piping, lift stations, etc. An additional study is underway by Fort Detrick to identify the scope for further action. The results of this study, when completed, should be examined to determine if a 20% reduction of contaminated sewage can be achieved for a cost of \$373,000 or less. If so, the project will qualify as an ECIP project. #### **Recommended ECIP Projects** | No. | Description | Const.
Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings
(mmBtu) | |------|-------------------------------|----------------|-----------------------------|-----------------------------|------------------|--------------|---------------------------| | S-10 | Reduce Contaminated
Sewage | \$373,000 | \$37,700 | \$0 | 9.9 | 2.1 | 11021 (Nat. Gas) | The remaining nine (9) ECOs that are recommended include two (2) O&M projects, five (5) Low Cost/No Cost (LC/NC) projects, and two (2) General projects. All three lists are shown in the following tables. #### **Recommended Non-ECIP O&M Projects** | No. | Description | Const. Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings
(mmBtu) | |-----|----------------------------------|-------------|-----------------------------|-----------------------------|------------------|--------------|---------------------------| | S-4 | Improve
Condensate
Return | \$321,000 | \$43,500 | \$0 | 7.4 | 2.2 | 12696 (Nat. Gas) | | S-7 | Insulate Steam & Condensate Line | \$1,008,000 | \$184,700 | \$0 | 5.5 | 3.8 | 53264 (Nat. Gas) | #### Recommended Non-ECIP LC/NC Projects | No. | Description | Const. Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings
(mmBtu) | |-----|------------------------------|-------------|-----------------------------|-----------------------------|------------------|--------------|---| | O-1 | Shut off Standby
Boilers | \$5,000 | \$87,700 | \$0 | 0.13 | 158 | 10995 (Nat. Gas) | | 0-2 | Improve Boiler
Sequencing | \$5,000 | \$41,000 | \$0 | 0.12 | 171 | -2273 (No.6 Oil)
13655 (Nat. Gas) | | O-5 | Fuel Use
Selection Plan | \$5,000 | \$215,000 | (\$10,000) | 0.02 | 1019 | -271508 (No.6 Oil)
284831 (Nat. Gas) | | O-6 | Alternate Fuels | \$5,000 | \$131,000 | \$0 | 0.40 | 549 | 38192 (Nat. Gas)
*simulated | | S-3 | Steam Pressure
Reduction | \$112,000 | \$39,700 | \$0 | 2.8 | 7.4 | 11505 (Nat. Gas) | Recommended Non-ECIP General Projects 85,397 \$ 504,400 | No. | Description | Const.
Cost | Annual
Energy
Savings | Annual
Maint.
Savings | LCCID
Payback | LCCID
SIR | Energy Savings
(mmBtu) | |-----|--------------------------------------|----------------|-----------------------------|-----------------------------|------------------|--------------|---------------------------| | B-5 | Oxygen Trim
Controls on
Boiler | \$75,000 | \$18,000 | (\$1,000) | 4.4 | 4.4 | 5248 (Nat. Gas) | | L-2 | Exit Sign to
Fluorescent | \$100 | \$11 | \$25 | 2.8 | 5.3 | 1 (kWh)
4 (\$kW) | In order to go further we recommended the ECOs be addressed as follows: #### A. Non-ECIP O&M Projects: Budget \$1.3 million for repairing leaks in the steam and condensate lines, and insulate steam and condensate lines that are not insulated or poorly insulated (ECO S-4 and S-7). Part of this work will include surveying the piping to prioritize where the improvements should be made first. #### B. Non-ECIP LC/NC Projects: Implement Non-ECIP LC/NC Projects where possible. These are low cost items that have the potential for significant savings. In some cases, standard operating procedures should be scrutinized carefully to see if they can be modified without impacting steam customers. #### C. Non-ECIP General Projects: The two projects listed are not of significant size, but should be implemented. D. Although not part of this study, we recommend the buildings served by the steam system be analyzed for potential ECOs. The models in this study can be used to identify buildings where steam usage is believed to be high. Many of the ECOs have "interactive" savings, which means you cannot add the savings from all the ECOs to get total cost savings. Some ECOs cannot realize the full savings estimated if another related ECO is implemented. For example, ECO O-6 is affected by the strategies described in ECO O-5. Depending on what decisions are made, it is believed total energy cost savings realized could be over \$500,000 per year, even with interactive savings eliminated from the savings calculations.. #### 2.0 METHODOLOGY #### 2.1 General The intention of this study is to assess current energy consumption at the Boiler Plant, and provide recommendations to improve energy efficiency. Entech has developed a very thorough format which is adhered to during the development of an energy report. This format has permitted Entech to construct comprehensive reports in a smooth and timely process. Entech has employed the format in the preparation of over three-hundred (300) energy studies for commercial, industrial, and institutional clients. The following is a listing of the components in Entech's methodology for completing energy studies: - 1. Kickoff Meeting - 2. Gather Existing Data - 3. Site Inspection - 4. Model Existing Energy Characteristics - 5. Energy Conservation Opportunities - 6. Draft Report Generation - 7. Client Review - 8. Final Report Generation #### 2.2 Kickoff Meeting In order to initiate the process, Entech scheduled a kickoff meeting at Fort Detrick in October of 1994. Entech was represented by William McMahon, Jeffrey Euclide, Daniel Gerhart, and Danette
Ernst. John Bennett and Ted Hahn represented Fort Detrick. Jim Sweger was present from the U.S. Army Engineer District, Baltimore. The purpose of the meeting was to introduce all parties and explain the process Entech was planning to follow during the study. In addition, Fort Detrick's expectations were noted and incorporated into the project. #### 2.3 Gather Existing Data Prior to the first site inspection, Entech requested electric, gas and oil billing data and boiler plant logs from Fort Detrick. Fort Detrick also provided previous studies pertaining to the boiler plant and steam distribution system. Entech reviewed the data to determine the operating profiles of the boiler plant and to determine which buildings use steam from the central system. #### 2.4 Site Inspection Entech performed site inspections of Fort Detrick during the months of December 1994, and of January and March 1995. During the December 1994 visit, Entech surveyed the steam distribution system and the buildings served by it. Entech did not enter any of the buildings. A photograph was taken of each building observed to be connected to the steam system and the following information about each building was recorded. - 1. Building Number - 2. Building Name - 3. Building Use - 4. Estimated Square Footage - 5. Construction Type (Pre-Engineered, Masonry, Wood Frame, etc.) - 6. Estimated Age - 7. Does the building appear to be insulated? - 8. Quantity and Type of Windows - 9. Type of Roof - 10. Estimated Building Ventilation Rate - 11. Does the building appear to use steam for process? - 12. Does the building appear to use steam for domestic hot water? - 13. Does the building appear to have a kitchen that may use steam? - 14. Does the building appear to return condensate to the boiler plant? - 15. Other notes Entech gathered additional information about the larger steam consuming buildings during the January 1995 visit to the site. Entech spoke to people from Fort Detrick's pipe shop about steam use in Army occupied buildings and to engineers from the National Cancer Institute (NCI) about steam use in the buildings that are used by NCI. Entech also surveyed the Boiler Plant, Building 190, during the January 1995 visit to the site. During this survey, information was obtained pertaining to the electric lighting and electric usage (motors, heaters, etc) in the building. Also, the layout of the plant and its systems was reviewed to determine a basic understanding of the operation. During the March 1995 visit, Entech made additional evaluations of the Boiler Plant systems and operations. 2-3 #### 2.5 Model Existing Energy Consumption #### 2.5.1 General After the site investigation phase is complete, Entech models the existing operation of energy users at the facility. Entech uses in-house computer programs, purchased computer programs, and literature to assist in calculating current energy costs for producing steam, and operating the boiler plant. The four main computer models used to estimate energy use are as follows: - 1. Steam Use Model - 2. Fuel Use Model - 3. Lighting Model - 4. Electric Model The standard abbreviations used in this report include the following: #### **Standard Abbreviations** | Key | Description | Key | Description | |------|-------------------------------|-------|------------------------------| | Ave | Average | lbm | Pound Mass | | Btu | British Thermal Unit | lbs | Pounds | | Btuh | British Thermal Unit per Hour | lb/hr | Pounds per Hours | | cfm | cubic feet per minute | mlbs | Thousand Pounds | | °F | Degrees Fahrenheit | mcf | Thousand Cubic Feet | | ft | Feet | min | Minute | | gal | Gallon | mmBtu | Million British Thermal Unit | | hr | Hour | mo | Month | | in | Inches | psig | Pounds per Square Inch Gauge | | kW | Kilowatt | sf | Square Foot | | kWh | Kilowatt per Hour | yr | Year | #### 2.5.2 Steam Use Model Entech developed a model that examines how all of the steam produced at the boiler plant is used. Most of the steam produced is used at the buildings for heating, reheat, humidification, domestic hot water, and process. The boiler plant uses some of the steam produced to preheat boiler feedwater, heat the No. 6 fuel oil, soot blowing, and oil atomization. The remainder of the steam produced is lost in the distribution system through leaks and heat loss from the piping. Each of the steam uses will be examined in the energy model section of this report. Please refer to the energy model section for more detail about the following steam uses. - 1. Space Heating - 2. Reheat - 3. Humidification - 4. Domestic Hot Water - 5. Autoclaves and Cage Washers - 6. Sewage Decontamination - 7. Other Process - 8. Boiler Plant Steam Use - 9. Distribution Losses #### 2.5.3 Fuel Use Model For evaluating fuel use, Entech models the natural gas and fuel oil data summarized in the billing section relative to the steam production from the plant. Costs are determined for each fuel, and tabulated by month for 1994. Lastly the fuel costs are matched with the steam use model for determining the impact of each category. #### 2.5.4 Lighting Models Entech uses a Lotus spreadsheet program to model the lighting load in the boiler plant. A sample lighting model is shown in Table 2.5.4.1. Information collected during the site inspections was entered into the program to develop a monthly estimate of energy cost, usage, and demand which is associated with building lighting. The program breaks down the costs by room or area. A definition of each column heading in the model is as follows: Area Location of lighting fixtures. Type Distinguishes fixtures with ballasts from fixtures without ballasts. The number 1.15 is the ballast factor included for fixtures which incorporate ballasts. These include Fluorescent, High Pressure Sodium, Metal Halide, and Mercury Vapor. A 15% increase in electrical load created by the ballast is accounted for in using the factor. A ballast factor of one (1) is used for incandescent fixtures since there are no ballast losses. <u>Illum (FC)</u> Footcandle light level reading measured in each area (not included in this report). # of Fixtures Number of fixtures in area. Fixtures used only for emergency lighting are not included. Lamps/Fixture Number of lamps per fixture. Watts per Lamp The rated electric loss per lamp or bulb. (Ballast losses not included.) **Total Watts** Total watts is calculated by multiplying "(Type)" x (# of fixtures) x (Lamps per fixture) x (Watts per lamp). <u>hrs/wk</u> The estimated hours of operation in one week. % of kW on Peak The estimated amount of connected load that is contributing to the typical monthly on-peak electrical demand. Normally the percent (%) on peak is less than 100% to account for burned out lamps. **kW on Peak** Calculated by multiplying (Total watts) x (% on-peak) / (1,000 watts/kW). Monthly kWh Calculated by multiplying (Total watts) x (hrs/wk) x (4.3 wks/mo) / (1,000 watts/kW). Monthly Costs Calculated by multiplying kW and kWh by the incremental rates for demand and usage shown at the bottom of the lighting model. # LIGHTING MODEL FORT DETRICK BOILER PLANT TABLE sample | | | | | | | | | | | | EL | ELECTRIC COSTS | STS | |--------------------------|-----------------------|--------|------|---------|-------|------------|-------|----------------------|--------------------|---------|----------------------|----------------|-------------------------| | | FIXTURE | LIGHT | NO. | LAMPS | WATTS | | HOURS | PERCENT DEMAND USAGE | DEMAND | USAGE | MONTHLY | MONTHLY | MONTHLY MONTHLY MONTHLY | | | TYPE | LEVELS | OF | PER | | TOTAL PER | PER | OF KW | ΚW | KWH PER | KWH PER DEMAND USAGE | USAGE | COST | | ROOM OR AREA DESCRIPTION | (1) (FC) FIX. FIXTURE | (FC) | HIX. | FIXTURE | LAMP | LAMP WATTS | WEEK | | ON-PEAK MONTH (KW) | MONTH | | (KWH) | Ş | - | TOTALS | | | | | | | | | | | | | INCREMENTAL DEMAND COST \$/KW = INCREMENTAL USAGE COST \$/KWH = NOTE #1: FOR BALLASTED FIXTURES A BALLAST FACTOR OF 1.15 IS USED, INCANDESCENT FIXTURES USE 1. G:\PROJECTS\4130.03\SS\LMODEL.WK1 PAGE 1 #### 2.5.5 Electrical Model Entech's Electrical Model is a computer spreadsheet used to identify electric loads within the building and to identify the individual contribution to electrical demand, usage, and cost. Loads have been identified from the site investigation. Information from the lighting model is reflected in the electric model. It is important to realize that the electric model is an approximation of the electricity used by each load. It shows general relationships and gives reasonable allocation of electrical demand, usage, and cost. Demand (kW) contributions and estimated kWh usages are then included in subsequent calculations of the Energy Conservation Opportunities of Section 6.0 for the boiler plant. A sample Electric Model is shown in Table 2.5.5.1. A description of each column heading follows: <u>Connected Load</u> The total connected electric load, expressed in kW, is shown for both the heating season and the cooling season. <u>Winter Demand</u> The average kW contributing to the billing demand each month. Winter months include December, January, February, and March. 2-9 <u>Intermediate Demand</u> The average contribution to billing demand in the intermediate months of April, May, October, and November <u>Summer Demand</u> The average contribution to billing demand in the summer months of June, July, August, and September. Winter Usage The estimated full load equivalent operating hours that the load operates in a day. The kWh/mo. in the next column is then calculated by multiplying (connect load) x (hrs/day) x 30. The lighting load is calculated in the lighting model and included within the
electrical model. Intermediate Usage The same as winter usage. **Summer Usage** The same as winter usage. Totals per Year The kW/month for each season is multiplied by 4 mo/season to calculate kW/season for winter, intermediate, and summer. They are then added together to get annual kW. kWh/year is calculated the same as kW. The annual cost is calculated by multiplying kW and kWh by the incremental costs. 2 - 10 Electric Model Fort Detrick Boiler Plant Table sample | | ź | | 2 | 7 | * 1 | 9 | 7 | ∞ | ٥ | 2 | = | 12 | 2 | 4 | 191 | 12 | 18 | 19 | ន | 21 | 77 | 2 | 47 X | 3 % | 27 | 28 | 29 | 8 | 31 | 33 | 3 | 4 4 | ક ર | 3 5 | 38 | 39 | 용 | 41 | 5 5 | 5 2 | 45 | 46 | 47 | 48 | 69 | 8 | 2 2 | 25 | 54 | 55 | 26 | 22 | 5 | |----------------------------|-------------|----|---|---|-----|-----|---|---|---|---|----|----|----|---|-----|-----|----|----|----|----|----|----|------|------|-----|-----|------|---|----|----|----|---|-----|-----|-----|----|----|----|-----|-----|----|----|----|----|----|----|-----|----|-----|----|----|----|---------| | Annual | \$/Yr. | T | | Annual | KWH/Yr. | Annual
Demand | Summer
Usage | KWH/Month | *************************************** | \prod | | Hours
Per | Day | Inter | KWH/Month | Hours
Per | ρg | Winter
Usage | KWH/Month | Hours
Per | Day | Summer
Demand | -1 | - | 8 | Winter Inter Demand Demand | KW/Month | Winter
Demand | KW/Month | Total
Connected | ~ | Description | TOTALE | | | No. | II | 7 | 6 | 4, | م د | 7 | œ | 6 | 9 | == | 22 | 23 | 7 | 2 2 | 3 5 | 18 | 19 | 70 | 21 | 22 | 23 | 24 | ্ব হ | 3 5 | 7 8 | 3 62 | æ | 31 | 33 | 33 | ह | S | 3 5 | , e | 9 | \$ | 41 | 42 | 63 | 44 | 4k | 47 | 48 | 49 | 20 | 21 | 22 | 3 2 | 55 | 36 | 27 | 58 | INCREMENTAL DEMAND COST \$/KW = INCREMENTAL USAGE COST \$/KWH = INCKEMENTAL USAGE COST MENT WINTER: DEC, JAN, FEB, MAR INTER: APR, MAY, OCT, NOV SUMMER: JUN, JUL, AUG, SEP G:\PROJECTS\4130.03\SS\EMODEL.WK1 #### 2.5.6 Heating Degree Days Monthly weather in degree days is shown in Table 2.5.6.1. The data is used in the space heating model to calculate heating costs for the base. The site does not utilize steam for heating during the sumer months, June through September. The degree day procedure for estimating heating energy requirements is based on the assumption that, on a long-term average, solar and internal gains will offset heat loss when the mean daily outdoor temperature is 65 degrees F. During a 24 hour period, every degree lower than 65 degrees F is considered a degree day. For example, on a day when the mean temperature is 20 degrees F, the number of degree days recorded would be 45 degree days (65 - 20 = 45). Fort Detrick collected heating degree day information at the boiler plant. This information correlates well with the steam requirements observed at the boiler plant. The measured total for the heating season is 5,532 heating degree days. 2-12 Figure 2.5.6.2 shows heating degree days in graph form. #### **Heating Degree Days Table 2.5.6.1** | Month | 1994 | |-----------|-------| | January | 1,322 | | February | 1,017 | | March | 851 | | April | 281 | | May | 215 | | June | 0 | | July | 0 | | August | 0 | | September | 0 | | October | 405 | | November | 549 | | December | 892 | | Total | 5,532 | #### 2.5.7 mmBtu/Unit The following energy values have been used in the energy calculations in this report. Table 2.5.7.1 mmBtu/Unit | Туре | Btu/Unit | |---------------------|-----------| | Natural Gas (mcf) | 1,030,000 | | Electricity (kWh) | 3,413 | | No. 6 Oil (gal) | 149,690 | | 110 PSIG Steam (lb) | 1,003 | Note: The steam value shown above is the energy required to heat steam from 220°F feedwater to steam at a line pressure of 100 psig. #### 2.6 Energy Conservation Opportunities (ECOs) After the energy models have been finalized, Entech begins to analyze the ECOs which were developed during the site inspection. An ECO describes an idea for decreasing energy costs, and the write up consists of the following sections: - 1. Existing Condition Description - 2. Proposed Condition Description - 3. Construction Cost Estimates - 4. Energy Savings - 5. Maintenance Savings - 6. Discussion #### 2.6.1 Existing Condition A general description of the existing condition will be provided as well as current annual energy costs. #### 2.6.2 Proposed Condition Description The project which is to be implemented will be described in adequate detail. The expected energy cost for the proposed project will be formulated and shown. #### 2.6.3 Construction Cost Estimates The construction cost estimates prepared for this study are considered to be "conceptual" in nature. They are conceptual because they are based upon engineering design that is less than one percent of a complete detailed design effort for such a project. The cost estimates are broken down into material, labor, and engineer components. Calculations or a spreadsheet is usually provided with each ECO. The final results of a project can vary significantly from the "Conceptual" cost estimate. The American Association of Cost Engineers (AACE) generally states that an accuracy range of plus or minus 20% from the total estimated cost is possible. Variations beyond this range are possible for the stated scope, but not likely. Since it is not possible to know the variations that can occur in the future, nor control certain technologies, contractors, or general economic conditions, the costs estimated herein should not be construed as fixed or precise. Rather they are estimates which will require a great deal of effort to manage until the final costs are realized. #### 2.6.4 Cost Savings This portion of the ECO compares the existing and proposed energy costs and notes increases or decreases in energy consumption. #### 2.6.5 Discussion Entech notes the expected payback period and return on investment for the ECO. Any additional benefits or concerns are noted in this section. #### 2.6.6 Life Cycle Cost Analysis Summary The life cycle costs were forecasted with the Blast: LCCID version 1.0, Level 80 Program. LCCID is an economic analysis computer program tailored to the needs of the Department of Defense (DoD). It is intended to be used as a tool in evaluation and ranking design alternatives for new and existing buildings. LCCID has built-in calculation procedures recognized as a standard for the DoD. The following is the specific criteria and other guidance embodied in LCCID according to the LCCID users manual. The specific criteria and other guidance embodied in LCCID are: - Office of Management and Budget (OMBP Circular A-94, March 27, 1972. OMB Circular A-94 has a new version (October 29, 1992) but a final decision on incorporating the new circular into tri-service criteria has not been determined. - Code of Federal Regulations, 10 CFR 436A, January 25, 1990. Annual fuel escalation rates are published by NIST (National Institute of Standards and Technology) under sanction by DoE. 2-17 - Memorandum of Agreement on Criteria/Standards for Economic Analysis/Life Cycle Costing for MILCON Design, 18 March 1991. This memorandum obviated the need for separate criteria in the three services (Army, Air Force, and Navy) of the Department of Defense. - 4. DoD Energy Conservation Investment Program (ECIP) Guidance. This guidance uses the memorandum from Item 3, as its basis, but also has some qualifying factors for energy conservation projects and specifies its own format. The LCCID Program is structured as shown on Table 2.6.6.1, ECIP Study LCCID Ready Reference, which can be found at the end of this section. This table was obtained from the LCCID program users manual. The following criteria was selected/entered into the LCCID program to obtain the Life Cycle Cost Analysis Summaries prepared as part of each ECO: - A. Common criteria selected for all life cycle cost analysis summaries: - Military Construction Army - User Entry of Consumption Values - ECIP Project - Energy Escalation Rates for FY94 (only option available) - English Units -Entech Engineering, Inc. #### B. Common criteria entered into all life cycle cost analysis summaries: - ECIP Economic Life: Twenty years - Location: Pennsylvania - Electric Usage Cost: \$7.03 per mmBtu $$\left(\frac{.024}{kWh} \times \frac{kWh}{3,413 Btu} \times \frac{1 \times 10^6 Btu}{mmBtu}\right)$$ - Project Number: #4130.03 - Fiscal Year: 1995 - Project Title: EEAP - Installation Name: Ft. Detrick Army Depot - Study Preparer: JED - Salvage Value: \$0 ### C. Criteria
entered into life cycle cost analysis summaries from the ECO: - Discrete Portion Title: ECO # - Construction Cost: Dollars - Design Cost: Dollars (Program default of 6% of construction cost rounded off.) - Supervision, Inspection, and Overhead (SIOH): Dollars (Program default of 5.5% of construction cost rounded off.) - Energy Savings: mmBtu (Electrical, oil, gas, etc.) - Demand Savings: Annual Dollars (Electrical only) - Annual Recurring Savings: Maintenance Savings A sample Life Cycle Cost Analysis Summary Report is shown in Table 2.6.6.2 located at the end of this section. In this example, all the common criteria noted in 2, Items A and B, was selected or entered into this summary report. In Part 1 of the summary report, a construction cost of \$100,000 and a design cost of \$6,000 was assumed (rounded in some cases). The SIOH was rounded off to \$6,000 by the user. In Part 2 of the summary report, an electric energy saving of 1,000 mmBtu/yr was assumed. A \$2,000/yr demand savings shown in "2 M" was also assumed. In Part 3 of the summary report, a maintenance savings of \$100/yr was also assumed. In the actual summary report, the above-assumed numbers would originate from an ECO. In the example, the program calculated a simple payback of 12.26 years and a savings to investment ratio of 1.26. 2-20 TABLE 2. #### TABLE 2.6.6.2 ``` LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK2 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: FT. DETRICK REGION NOS. 3 CENSUS: 3 PROJECT NO. & TITLE: 4130.03 FT. DETRICK STEAM STUDY FISCAL YEAR 1995 DISCRETE PORTION NAME: EXAMPLE ANALYSIS DATE: 07-20-95 ECONOMIC LIFE 20 YEARS PREPARED BY: ENTECH ENG. 1. INVESTMENT A. CONSTRUCTION COST $ 100000. B. SIOH $ 6000. C. DESIGN COST $ 6000. D. TOTAL COST (1A+1B+1C) $ 112000. E. SALVAGE VALUE OF EXISTING EQUIPMENT $ F. PUBLIC UTILITY COMPANY REBATE $ 0. 0. G. TOTAL INVESTMENT (1D - 1E - 1F) $ 112000. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL $ DISCOUNT DISCOUNTED $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) FUEL A. ELECT $ 7.03 1000. $ 7030. 15.61 $ 109738. B. DIST $ 4.25 0. $ 0. 17.56 $ 0. C. RESID $ 2.81 0. $ 0. 19.97 $ 0. D. NAT G $ 3.43 0. $ 0. 20.96 $ 0. E. COAL $.00 0. $ 0. 17.58 $ 0. F. LPG $.00 0. $ 0. 17.58 $ 0. M. DEMAND SAVINGS $ 2000. 14.74 $ 29480. N. TOTAL 1000. $ 9030. $ 139218. 3. NON ENERGY SAVINGS(+) / COST(-) $ 100. 14.74 $ 1474. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS (+) / COSTS (-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) SAVINGS(+)/ COST(-)(4) ITEM d. TOTAL $ 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ 1474. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 5. SIMPLE PAYBACK PERIOD (1G/4) 12.27 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) $ 140692. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = (IF < 1 PROJECT DOES NOT QUALIFY) 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 4.28 % ``` ### 2.7 Draft Report/Client Review/Final Report After the previous sections have been substantially completed, Entech proceeds to compile the information into the report format. Entech schedules a meeting with the client to present its findings. A copy of the report is supplied to the client for a more detailed review. The client's review process typically lasts 2-3 weeks. Entech will then proceed to incorporate the clients review comments and produce a final report. Typically, the final report will be completed within two weeks. ### 3.0 FACILITY DESCRIPTION ### 3.1 General The Fort Detrick facility is located in Frederick, Maryland. The two (2) square mile site contains over 200 buildings and homes that are occupied by the U. S. Army and the National Cancer Institute. An overview of the portion of the base served by the steam system can be seen by reviewing the Steam Distribution System map in Attachment 8.8. Fort Detrick's mission is to provide base operations support for the missions of tenant activities on the installation. Such activities include the potentially hazardous research operations of the National Cancer Institute's Frederick Cancer Research and Development Center, the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the U.S. Department of Agriculture's Agricultural Research Service, and the U.S. Army Medical Research and Development Command (USAMRDC). The Fort Detrick Boiler Plant serves approximately 120 buildings on the site. The availability of steam is vital for research with infectious materials and agents in order to prevent endangering the public as well as the environment. Steam provides sterilization of all liquid waste from contaminated laboratory buildings as well as operation of large and small autoclaves. Steam also provides the heat for laboratory controlled environments (temperature/humidity) as well as the normal requirements of space heating. The existence of a central steam system, as well as a contaminated sewage collection/sterilization system, is the reason why the tenants have located at Fort Detrick. ### 3.2 Boiler Plant The first portion of Fort Detrick's Boiler Plant, Building 190, was constructed in 1952. The original installation included four (4) 33,000 lb/hr, No. 6 oil-fired boilers, which were numbered 1 through 4. Building 190 was expanded in 1956 to add two (2) 66,000 lb/hr boilers, numbers 5 and 6. In 1966, Boilers No. 3 and No. 4 were replaced by a new 130,000 lb/hr boiler. The new boiler was labeled Boiler No. 3 and eliminated the reference to Boiler No. 4. In 1991, Boilers No. 1 and No. 2 were replaced by two (2) new 65,000 lb/hr boilers. At the present time, the peak "available" capacity of the boilers for the site is at 262,000 lb/hr assuming that the largest boiler, No. 3, could be out of service at anytime. The support systems for the boilers for the most part are of common systems. This includes make-up water with chemical treatment, blowdown heat recovery and softened water; deaerator heating including condensate return; blowdown accumulation and recovery; fuel oil storage, heating and transfer; compressed air; and emergency power (80% of plant operation) via a diesel generator. A summary of the boilers is shown in Table 3.2.1 on the following page. ### Fort Detrick, Building 190 Boiler Plant Systems Table 3.2.1 | No | Capacity (lb/hr) | Yr.
Built | Description | Nat.
Gas | No. 6
Oil | Stack
Econ. | ID Fan | FD Fan | |----|------------------|--------------|----------------------|-------------|--------------|----------------|--------|--------| | 1 | 65,000 | 1991 | Packaged Watertube | yes | yes | yes | no | yes | | 2 | 65,000 | 1991 | Packaged Watertube | yes | yes | yes | no | yes | | 3 | 130,000 | 1966 | Industrial Watertube | yes | yes | yes | yes | yes | | 5 | 66,000 | 1953 | Industrial Watertube | yes | yes | no | yes | yes | | 6 | 66,000 | 1956 | Industrial Watertube | yes | yes | no | yes | yes | Original Boilers No. 3 and No. 4 were replaced by Boiler No. 3 listed above. Other Boiler numbers remained the same. The total installed capacity of the Boiler Plant is 392,000 lb/hr. A brief description of the boilers, and a summary of the Boiler System Specifics, Common Systems and Support Equipment follow. ### 3.2.1 Description of Existing Boilers - Boiler No. 1 Cleaver Brooks 65,000 lbs steam per hour, 2 drum, D-style packaged unit, natural gas / No. 6 oil fired burner firing through boiler end. Economizer installed on boiler flue gas outlet. Forced draft fan only. Boiler heating surface is 4,346 sf, and water wall heating surface is 751 sf. Constructed in 1991. - Boiler No. 2 Cleaver Brooks 65,000 lbs steam per hour. Same as Boiler No. 1. Entech Engineering, Inc. 3_3 Boiler No. 3 Erie City 130,000 lbs steam per hour, 2 drum, cross drum, brick set, field erected, total of four natural gas / No. 6 oil burners firing through boiler sidewall. Economizer installed on boiler flue gas outlet. Forced draft and induced draft fans. Boiler heating surface is 10,640 sf, and water wall hearing surface is 2,750 sf. Constructed in 1966. New economizer installed in 1980. Boiler No. 5 Erie City 66,000 lbs steam per hour, Type IWT, 2 drum, cross drum, brick set, field erected, total of three natural gas / No. 6 oil fired burners. Forced draft and induced draft fans. Boiler heating surface is 7,310 sf, water wall heating surface is 830 sf. Constructed in 1953. Boiler No. 6 Keeler Co. 66,000 lbs steam per hour, 2 drum, cross drum brick set, field erected, total of three natural gas / No. 6 oil fired burners. Forced draft and induced draft fans. Boiler heating surface 6,168 sf. Water wall heating surface 1,832 sf. Constructed 1956. ### 3.2.2 Boiler System Specifics | Boiler Operating Conditions | 110 psig | (344°F) | |-------------------------------|-------------|-------------| | Boiler Drum Conditions | 115-125psig | (347-353°F) | | Boiler Header Conditions | 110-112psig | (344-346°F) | | Distribution Conditions | 90-110psig | (330-344°F) | | Condensate Return | 5-12psig | (160-220°) | ### 3.2.3 Common Systems | Feedwater Temperature | (Ave.) | 220°F | from deaerator | |-------------------------|--------|-------|----------------| | Make-up Temperature | (Ave.) | 60°F | to deaerator | | Condensate Return Temp. | (Ave.) | 165°F | to deaerator | ### 3.2.4 Support Equipment Deaerators (Qty of 3) Feedwater pumps (Qty of 5) Make-up Water (Tank/Pumps etc.) Condensate Equipment (Tank/Pumps etc.) Softened Water Equipment (Tank/Pump etc.) Chemical Feed (Bins/Pumps etc.) Compressed Air Equipment-Plant only (Air Compressors, Dryers, etc) Fuel Oil System (Tanks, Pumps, Heaters, etc) Refer to the electric model in Section 5.14 for details of the boiler plant's equipment. Information in that section pertains to the connected loads and power consumption (i.e., demand and usage). Figure
3.2.2 is a layout schematic of the boiler plant showing the location of major equipment including all electrical users listed in the electric model. The plant's primary auxiliary systems and equipment are briefly discussed in the following pages.. ### 3.2.5 Treatment of Boiler Feedwater The raw water supply is initially feed through the plant's Zeolite Water Softening Equipment prior to its storage in the Make-up Water Storage Tank. From here the make-up water is sent to one of three deaerators located on the upper level for heating and dearation. In addition, make-up and/or boiler feedwater are treated with various chemicals in an attempt to remove the remaining corrosive gases, and to stabilize the alkalinity of the water. Salt, phosphates, sodium hydroxide, sulfites and polymers constitute the majority of chemicals involved with the treatment of boiler feedwater at Fort Detrick. ### 3.2.6 Deaerators Boiler condensate return and make-up water are combined in the three deaerators with pressure reduced steam to remove the majority of dissolved gases. This is done to minimize corrosion in the feedwater piping and boiler tubes. The added steam which includes flashed boiler blowdown also adds heat to the water mix, thus reducing the fuel input requirements. ### 3.2.7 Stack Economizers Boiler feedwater is pumped from the dearator storage tanks to the individual boiler drums. On three of the Boilers, No. 1, No. 2, and No. 3, the feedwater is first passed through a steam to water heat exchanger, and then through a stack economizer in the high temperature flue gas steam. The reason for doing this is to take advantage, within reason, of excess heat in the flue gas. The purpose for pre-heating the feedwater prior to entering the economizers is to maintain tube surface temperatures above the dew point of the flue gas, minimizing corrosion on the tubes. Once the feedwater exits the economizers it then is piped directly to the boiler drums. 3-6 ### 3.2.8 Blowdown and Heat Recovery All five boilers utilize pinch valves for controlling continuous blowdown at a single location near the common blowdown tank. At present, each boiler is manually controlled based on daily evaluations of the individual boiler drum solids concentrations. Flashed steam from the blowdown helps to feed the deaerators, and the blowdown itself is sent through a plate and frame heat exchanger to heat incoming make-up water, from the storage tank, prior to its entry into the deaerators. ### 3.2.9 Natural Gas Supply Natural gas is supplied by Frederick Gas Company of Frederick, Maryland. During the 1980's a gas main was installed that runs across the Fort Detrick site. The routing placed the line next to the boiler plant allowing for a tap for the plant. The 4" branch to the plant initially comes in at 200 psig, and it is eventually reduced down to 30-35 psig for Boilers No. 1, No. 2, No. 5, and No. 6, and 13 psig for Boiler No. 3. Metering is done at the main by Frederick Gas, and by Fort Detrick personnel with each boiler. ### 3.2.10 Oil Storage and Transfer Fort Detrick stores No. 6 fuel oil on site for use in the Boiler Plant. The fuel oil is used to supplement gas service from Frederick Gas. One (1) 400,000 gallon aboveground tank is currently available for fuel oil storage. Ten (10) 53,000 gallon No. 6 oil underground storage tanks were recently removed from the site. A 250,000 gallon aboveground tank will be constructed later this year to replace the removed tanks. Fort Detrick will then have 650,000 gallons of fuel oil storage capacity. The oil will be pumped from either tank by one of two existing pumps in the pump house on site. The oil will be heated prior to pumping by a suction heater at the tank. The oil is pumped to one of two day tanks when the plant operator decides their levels are too low. Each of these existing day tanks will be replaced with a 12,000 gallon double wall underground storage tank as part of the ongoing fuel storage project. When oil is required for one of the boilers, the oil is pumped from either of the day tanks with its associated pump and heater set. The entire fuel oil system is manually operated. The only automatic controls are safety shutoffs to prevent overfilling the day tanks. Metering of the oil is performed by Fort Detrick personnel with each boiler. **3-8** ### ABBREVIATIONS - CHEMICAL FEED PLANS - CONDENSATE PLANS - EXHAUST FAN - FORCED DRAFT FAM - FUEL OIL PUMP - FEED WATER PUMP - HOT WATER HEATER - MOTOR CONTROL CENTER - MAKEUP WATER PUMP - SUMP PUMP - SOFTENED WATER PLAN ### NOTES: - 1) LOCATION OF DEMATORS FOR CLARITY, LOCATIONS MAY WARY SUBMILY. THE THRO TANK NOT SHOWN IS LOCATED ABOVE THE TREATED MATER TANK. - 2) LOCATION OF FUEL OIL TANKS SOUTHEAST OF BOILER PLANT. ### 3.3 Steam Distribution Steam is distributed to the buildings at Fort Detrick through an extensive piping system, consisting of pipe in underground tunnels, direct buried pipe, and overhead lines. Some of the overhead piping was installed to replace failed underground lines. The bulk of the piping remains in place either in tunnels or underground. Steam leaves the boiler plant at a pressure of 110 psi through four different pipes. The three original mains, two (2) 10" and one (1) 8" pipe supply steam to all of the buildings on the Central System except Building 1425, USAMRIID, which has a separate 16 inch line that was installed around 1988. The line was intended to alleviate problems of inadequate steam pressure at the building. There are numerous pressure reducing stations around the base, and they are primarily, located in manholes. These stations reduce the steam pressure to the level required by the buildings served from the manhole. Office buildings typically require only 10-15 psi steam for space heating and domestic hot water. Laboratories may require steam pressures at a minimum of 60-70 psi to operate autoclaves or other process equipment. Condensate is returned from the distribution mains, and from applications and processes that are not considered hazardous. In the cases where steam or condensate is potentially exposed to hazardous materials, as with autoclaves, the condensate is then sent directly to the contaminated sewage system for process. Processes like the contaminated sewage treatment use direct injection and therefore do not create condensate for return. The original installation allowed for the majority of the piping to be gravity feed to the condensate storage tank near the boiler plant. Subsequent changes to the piping due to re-design or condensate repairs has led to the increased use of condensate pump sets. Condensate and steam piping leaks have been and will continue to be a problem. A number of repairs are presently in process for resolving such leaks. Condensate return numbers have progressively gotten better as these repairs are completed. In 1993, condensate levels dropped to around 25% at times. Leak resolution and some undetermined process changes have increased this total to over 40%. It was estimated that the present breakdown of linear feet of piping aboveground, underground and within tunnels is as follows in Table 3.3.1. Steam and Condensate Piping Estimates (ft) Table 3.3.1 | Location | Percent | Steam | Condensate | Total | |-------------|---------|--------|------------|--------| | Aboveground | 35% | 15,050 | 18,200 | 33,250 | | Underground | 10% | 4,300 | 5,200 | 9,500 | | Tunnel | 55% | 23,650 | 28,600 | 52,250 | | Total | 100% | 43,000 | 52,000 | 95,000 | The piping and insulation conditions can be summarized as follows. The newer aboveground steam and condensate is adequately insulated and in good shape. The underground piping is in poor condition with leaks continuing to develop as The piping and insulation conditions can be summarized as follows. The newer aboveground steam and condensate is adequately insulated and in good shape. The underground piping is in poor condition with leaks continuing to develop as time passes. Its insulation is also considered in poor condition because of the evident browning of the grass above. The tunnel piping which includes the manholes is in fair to poor condition with some noticeable leaks from particular manholes. The insulation in many of the manholes is either in bad condition or completely off the piping. Insulation in the tunnel is assumed to be in similar condition, poor. A detailed study of this piping would be required to determine a scope for addressing these problems. Attachment 8.8 contains a map of the steam distribution system. This information was gathered from existing zone maps provided by Fort Detrick's engineering office and from data collected by Entech during site visits. The map is intended to be an overview of the system layout and sizes. ### 3.4 Buildings Most of the buildings connected to the Steam Distribution System are positioned between Rosemont Avenue (State Route 73) and Ditto Avenue. The buildings not served by the Steam Distribution System are either unheated, utilize an independent oil fired heating system, utilize an independent gas fired heating system, or have electric heat. Table 3.4.1 lists the buildings connected to the Steam Distribution System. The building name, use, and estimated square footage is included in the table. ### FORT DETRICK FREDERICK, MARYLAND Table 3.4.1 BUILDINGS USING STEAM | Bldg. No. | Building Name | Building Use | Building SF | Comments | |----------------|--|-----------------------|-------------
--| | S-10 | Signal Service | Office | 4,600 | | | S-11 | Thrift Shop | Store | 3,000 | | | S-12 | Signal Service | Empty? | 1,000 | | | S-100 | Outside Electric Shop | Warehouse/Shop/Office | 5,000 | | | S-101 | Sewage Pump | | 800 | | | S-122 | Rodent/Pest Control | Storage | 1,100 | | | 190 | BOILER PLANT | 0.0.0.30 | 11,200 | | | S-199 | FE Mnt. Shop | Wharehouse/Shop | 12,100 | - Auto- | | 200 | TEMME OTOP | Equipment Shed | 1,200 | | | S-201 | Engineering Offices | Offices | 25,300 | | | T-239 | Cancer Research Center | Warehouse | 10,000 | | | S-243 | Fe Sths | Warehouse/Shop | 6,600 | | | S-243
S-244 | Cancer Research Center | Office | 5,100 | | | | | Warehouse | 4,800 | | | T-248 | Cancer Research Center | | 4,800 | | | T-249 | Cancer Research Center | Warehouse | | | | S-261 | Radiology | Labratory | 2,500 | - Inches | | S-262 | Gen. Storehouse | Warehouse | 5,000 | | | S-263 | Fe Mnt Shop | Mech Shops/Storehouse | 13,900 | F 1: 11 040 | | S-312 | CRC - Fermentation Production Facility | | 400 | Fenced in with 313 | | S-313 | CRC - Fermentation Production Facility | | 2,300 | | | 314 | Cancer Research Center | Warehouse/Shop | 3,800 | | | S-318 | | Warehouse | 3,300 | | | S-319 | | Warehouse | 3,300 | | | S-321 | Cancer Research Center | Office | 4,000 | Currently under construction | | S-322 | Cancer Research Center | Office | 4,000 | | | S-323 | Cancer Research Center | Warehouse | 3,300 | | | S-324 | NCI-FCRF Central Supply & Trans | Warehouse | 7,500 | | | S-325 | Cancer Research Center | Labratory | 12,800 | | | 326 | USDA | Storage | 200 | | | S-347 | Cancer Research Center | Chemical Storage | 2,000 | | | 349 | Cancer Research Center | Office | 3,000 | | | S-350 | Cancer Research Center | Office/Maintenance | 9,300 | | | S-361 | Cancer Research Center | Maintenance Shop | 11,400 | | | T-362 | Cancer Research Center | Office | 9,400 | The same of sa | | 374 | USDA | Lab | 18,400 | | | 375 | Steam Sterilization Plant | Shop | 21,200 | | | 376 | Cancer Research Center | Labratory | 31,300 | | | 393 | Incinerator | Incinerator | 7,600 | | | S-426 | CRC-Safety Protective Services | Offices/Med | 6,800 | | | 427 | Cancer Research Center | Office | 6,000 | | | 428 | Cancer Research Center | Office | 7,400 | | | 429 | Cancer Research Center | Lab | 6,400 | | | 430 | Cancer Research Center | Office | 6,000 | | | 431 | Cancer Research Center | Lab | 12,000 | | | S-432 | Cancer Research Center | Lab | 21,500 | | | S-433 | Cancer Research Center | Lab | 5,800 | Replaced with a new lab | | S-434 | CRC - Fermentation | Offices/Lab | 13,800 | | | S-459 | Cancer Research Center | Warehouse/Shop | 10,200 | Undergoing major renov. | | 469 | Cancer Research Center | Labratory | 56,100 | | | 472 | Cancer Research Center | Labratory | 6,500 | Contains numerous tanks. | | T-501 | Education/Library | Office | 7,600 | | | S-504 | USAMRDC | Office | 9,800 | | | S-505 | HQ USAMRDC | Office | 3,900 | | | S-521 | Adm Gen Purp | Office | 11,500 | | | S-522 | Cancer Research Center | Labratory | 13,000 | | | S-524 | USAMBRDL Admin | Office | 5,300 | | | S-525 | Adm Gen Purp | Office | 6,500 | | | | | Labratory | 64,200 | | | 538 | Cancer Research Center | Labratory | U+,2W | | ### FORT DETRICK FREDERICK, MARYLAND Table 3.4.1 BUILDINGS USING STEAM | Bldg. No. | Building Name | Building Use | Building SF | Comments | |-----------|---|--------------------|-------------|-------------| | 539 | CRC-Leroy D. Fothergill Lab | Lab | 110,400 | | | 549 | Cancer Research Center | Library | 15,000 | | | 550 | Cancer Research Center | Labratory | 20,000 | | | 560 | Cancer Research Center | Labratory | 170,000 | | | 562 | Cancer Research Center | Labratory | 15,000 | | | 567 | Cancer Research Center | Lab | 33,000 | | | 568 | Biomedical R&D lab | Lab | 49,300 | | | 571 | CRC-ANIMAL BUILDINGS | Labratory | 35,700 | | | 576 | CRC-Biological Response Modifiers | Office | 2,200 | | | T-611 | William Strough Auditorium | Auditorium w/stage | 5,200 | | | S-660 | Visiting Officers Quarters | Residence | 12,200 | | | T-701 | visiting Office's Qualities | Office | 2,000 | | | | Fire Station | Office | 2,300 | | | T-703 | | Dt-Eb | | | | T-713 | Post Exchange | Post Exchange | 9,600 | | | T-715 | Judge Advocate/Legal Assist DVQ Residence | Office | 2,400 | | | T-718 | Community Club | Community Club | 10,500 | | | T-722 | Adm. Gen Purp. | Office | 9,600 | | | T-817 | ASAMRAA | Office | 10,400 | | | 810 | Administration | Office | 34,200 | <u> </u> | | T-818 | Administration | | 2,000 | | | T-819 | ASAMRAA | Office | 1,400 | | | T-820 | ASAMRAA | Office | 7,200 | | | T-823 | Medical Logistics | Office | 2,100 | <u> </u> | | T-824 | Medical Logistics | Office | 2,100 | | | T-830 | Training Center | Office | 7,500 | | | T-833 | Navy | Office | 6,700 | | | T-834 | Navy | Office | 500 | | | T-835 | | Office | 1,600 | | | T-838 | Field House | Field House/Gym | 13,400 | | | S-839 | Fitness Center | Gym | 5,000 | | | T-901 | Gen. Store House | Warehouse | 10,000 | | | T-902 | Motor Pool | Office | 4,600 | | | T903 | Motor Pool | Office | 2,000 | | | T-904 | Motor Pool | Office | 2,000 | | | T-914 | PM Adm | Office | 3,700 | | | 915 | Bowling Center | Bowling/Office | 5,000 | | | T-921 | Car Wash/Auto Shop | Shop | 3,400 | | | T-925 | Religious Education | Training/Education | 2,100 | | | 949 | YOUTH CENTER | Youth Center | 5,200 | | | 1021 | Cancer Research Center | Admin/Food Storage | 7,500 | | | 1022-1049 | CRC-ANIMAL BUILDINGS | Animal Storage | 36,000 | | | 1040 | CRC-ANIMAL BUILDINGS | Maintenance | 3,000 | | | 1050 | Cancer Research Center | Warehouse/Offices | 40,000 | | | 1054 | Medical Advance Tech Mgmnt | Office/Warehouse | 37,000 | | | 1301 | USDA | Labs/Offices | 39,900 | | | 1302 | USDA | Labs/Offices | 8,800 | | | 1303 | USDA | Greenhouse | 3,700 | | | 1304 | USDA | Greenhouse | 3,700 | | | 1305 | USDA | Greenhouse | 3,700 | | | 1306 | USDA | Greenhouse | 3,700 | | | 1412 | USAMRIID ANNEX | Lab | 70,000 | | | 1414 | USAMRIID ANNEX | Warehouse | 2,000 | | | 1422 | DATA PROCESSING | Office | 11,200 | | | 1425 | USAMRIID ANNEX | Lab | 224,100 | | | | | Residence | 38,200 | | | 1430 | ENLISTED BARRACKS | | | | | 1520 | Commisary | Commisary | 40,100 | <u>И.</u> | 1,766,200 ### 4.0 BILLING HISTORIES ### 4.1 General The energy analysis for this report is based upon data obtained for the 12 month period from January 1994 through December 1994. Information from 1993 is also included for comparison. The gas billing summarizes the direct costs associated with using gas for the boilers in the boiler plant. Additionally, natural gas and fuel oil usage, and boiler steam production totals are investigated in this section. This data was obtained from boiler logs maintained daily at the plant. To remain consistent and clear, Entech will use the information from the boiler logs to develop fuel to steam efficiencies, and for identifying usage trends and/or impact. The billing associated with the electrical use is for the entire site. Electric usage meter readings for the boiler plant, as recorded by boiler plant personnel, are also included to complete the analysis. ### 4.2 Natural Gas For this report, the concern will only be for the natural gas used in the plant for making steam. The Frederick Gas Company supplies natural gas on an interruptible service for the boiler plant. Table 4.2.1 on the following page displays their billing history to the boiler plant for 1993 and 1994. Figure 4.2.2. graphically displays gas consumption for the last two years according to the Frederick Gas Company bills. Copies of the bills and the sales agreement for Fort Detrick can be referenced in Attachment 8.1. ### 1993/1994 Natural Gas Billing History Frederick Gas Company, Account #6000.001005 Table 4.2.1 ### 1993 - Natural Gas Billing History | | Total | Usage | Cost | Ave. | | | |--------|--------|---------
-------------|--------|---------|---------| | Month | # Days | (mcf) | (\$) | \$/mcf | mcf/day | mmBtu | | Jan | 29 | 22,220 | \$85,534 | \$3.85 | 766 | 22,887 | | Feb | 31 | 21,030 | \$81,033 | \$3.85 | 678 | 21,661 | | March | 30 | 37,010 | \$142,607 | \$3.85 | 1,234 | 38,120 | | April | 30 | 74,820 | \$288,012 | \$3.85 | 2,494 | 77,065 | | May | 28 | 53,150 | \$231,516 | \$4.36 | 1,898 | 54,745 | | June | 33 | 55,730 | \$242,754 | \$4.36 | 1,689 | 57,402 | | July | 30 | 50,080 | \$174,849 | \$3.49 | 1,669 | 51,582 | | Aug | 32 | 51,760 | \$180,715 | \$3.49 | 1,618 | 53,313 | | Sept | 30 | 55,070 | \$214,776 | \$3.90 | 1,836 | 56,722 | | Oct | 29 | 59,560 | \$208,975 | \$3.51 | 2,054 | 61,347 | | Nov | 30 | 78,620 | \$277,206 | \$3.53 | 2,621 | 80,979 | | Dec | 30 | 39,700 | \$156,208 | \$3.93 | 1,323 | 40,891 | | Totals | 362 | 598,750 | \$2,284,185 | \$3.81 | 1,654 | 616,713 | ### 1994 - Natural Gas Billing History | | Total | Usage | Cost | Ave. | | | |--------|--------|---------|-------------|--------|---------|---------| | Month | # Days | (mcf) | (\$) | \$/mcf | mcf/day | mmBtu | | Jan | 32 | 18,802 | \$73,621 | \$3.92 | 588 | 19,366 | | Feb | 28 | 33,527 | \$132,832 | \$3.96 | 1,197 | 34,533 | | March | 31 | 90,567 | \$356,005 | \$3.93 | 2,922 | 93,284 | | April | 29 | 66,430 | \$240,306 | \$3.62 | 2,291 | 68,423 | | May | 32 | 63,276 | \$229,123 | \$3.62 | 1,977 | 65,174 | | June | 30 | 46,638 | \$168,544 | \$3.61 | 1,555 | 48,037 | | July | 29 | 43,694 | \$158,215 | \$3.62 | 1,507 | 45,005 | | Aug | 33 | 53,261 | \$170,960 | \$3.21 | 1,614 | 54,859 | | Sept | 30 | 50,118 | \$160,083 | \$3.19 | 1,671 | 51,622 | | Oct | 31 | 60,033 | \$192,508 | \$3.21 | 1,937 | 61,834 | | Nov | 30 | 68,437 | \$219,457 | \$3.21 | 2,281 | 70,490 | | Dec | 30 | 13,885 | \$44,481 | \$3.20 | 463 | 14,302 | | Totals | 365 | 608,668 | \$2,146,135 | \$3.53 | 1,668 | 626,928 | As previously stated, the natural gas usage history from the Boiler Plant daily logs was accumulated for each boiler. This information is shown graphically in Figure 4.2.3, for 1994 and it is also Tabulated in Table 4.2.4 for 1993 and 1994. Natural gas used for banking by each boiler is identified separately in Table 4.2.5. Banking is the practice of utilizing fuel for maintaining drum pressure in a boiler while on standby. Figure 4.2.6 compares the total usage trends for 1993 and 1994. Again, the boiler log data will be used for determining efficiencies, and savings where applicable. - Entech Engineering, Inc.- 4-4 ## 1994 Natural Gas Usage Boiler #1 thru #6 Measured in Boiler Plant **Figure 4.2.3** 1993/1994 Natural Gas Usage Log Data – Boilers #1 thru #6 Table 4.2.4 1993 - Natural Gas Usage | # Days (mcf) <t< th=""><th></th><th>Total</th><th>Roiler # 1</th><th>1 Roller # 2</th><th>Boiler # 3</th><th>Boiler # 5</th><th>Boiler # 6</th><th>Total</th><th>Gas</th><th>Gas to Steam or Banking</th><th>Banking</th></t<> | | Total | Roiler # 1 | 1 Roller # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | Gas | Gas to Steam or Banking | Banking | |--|-----------|-------|------------|--------------|------------|------------|------------|---------|-------------|-------------------------|----------| | 71 2,673 2,573 0 832 15,669 21,587 20,472 72 198 198 0 1,342 16,593 18,332 17,552 73 3,255 1,104 25,914 594 9,173 40,041 39,010 30 13,312 12,261 40,970 413 8,886 75,842 74,473 31 2,316 2,555 34,472 9,675 11,266 60,284 58,814 30 12,619 13,321 942 14,724 14,320 55,926 54,654 31 12,619 13,321 241 21,827 55,926 54,654 31 14,304 14,774 71,846 51,97 54,659 30 14,774 72,841 71,482 55,890 55,890 31 17,792 16,678 27,474 56,986 55,890 55,890 31 20,182 16,678 27,241 5,210 7,482 8 | Month | | (mcf) | | (mcf) | | | (mcf) | Steam (mcf) | Bank (mcf) | Bank (%) | | h 31 3,255 1,104 25,914 594 16,593 18,332 17,552 n 31 3,255 1,104 25,914 594 9,173 40,041 39,010 30 13,312 12,261 40,970 413 8,886 75,842 74,473 30 12,619 2,555 34,472 9,675 11,266 60,284 58,814 30 12,619 13,321 942 14,724 14,320 55,926 54,654 31 12,619 14,774 733 12,846 21,827 55,926 54,651 30 810 847 21,846 21,827 55,807 55,809 53,690 31 14,774 733 12,888 13,178 55,807 55,809 55,809 30 20,170 27,241 5,210 7,482 86,012 84,541 31 17,792 16,678 17,724 15,046 66,987 62,652 < | ne. | 31 | | 2.513 | l | 832 | 15,569 | 21,587 | 20,472 | 1,115 | 5.2% | | h 31 3,255 1,104 25,914 594 9,173 40,041 39,010 30 13,312 12,261 40,970 413 8,886 75,842 74,473 31 2,316 2,555 34,472 9,675 11,266 60,284 58,814 30 12,619 13,321 942 14,724 14,320 55,926 54,564 31 5,418 5,197 241 21,846 21,827 55,926 53,690 31 14,304 14,774 733 12,846 13,178 55,877 54,451 30 20,170 810 857 27,541 5,210 7,482 86,012 31 17,729 16,678 13,079 5,210 7,482 86,012 84,541 32 36 12,532 35,375 35,375 35,375 36,369 36,369 34 36 12,543 150,462 644,489 629,527 36,461 < | Feb | 28 | 198 | | 0 | 1,342 | | 18,332 | 17,552 | 780 | 4.3% | | 30 13,312 12,261 40,970 413 8,886 75,842 74,473 31 2,316 2,555 34,472 9,675 11,266 60,284 58,814 30 12,619 13,321 942 14,724 14,320 55,926 54,564 31 5,418 5,197 241 21,827 54,529 53,690 30 30 810 857 27,543 27,474 56,987 55,809 31 17,792 16,678 27,241 5,210 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 30 29,170 35,375 905 13,079 7,482 86,012 46,598 30 10,125 12,543 150,462 644,489 629,527 7 34 36 10,129 11,052 9,779 12,539 53,707 52,461 | March | 31 | 3.255 | _ | 25,914 | 594 | 9,173 | 40,041 | 39,010 | 1,031 | 2.6% | | 31 2,316 2,555 34,472 9,675 11,266 60,284 58,814 30 12,619 13,321 942 14,724 14,320 55,926 54,564 31 5,418 5,197 241 21,827 54,529 53,690 30 30 810 857 27,241 51,774 56,987 55,809 31 17,792 16,678 27,241 5,210 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 30 29,170 35,375 905 13,079 7,482 86,012 84,541 4 12,543 122,512 132,628 117,343 150,462 644,489 629,527 30 30 10,129 11,052 9,779 12,539 53,707 52,461 | April | 30 | 13,312 | - | 40,970 | 413 | 8,886 | 75,842 | 74,473 | 1,368 | 1.8% | | 30 12,619 13,321 942 14,724 14,320 55,926 54,564 31 5,418 5,197 241 21,827 54,529 53,690 30 30 810 857 27,241 51,774 56,987 54,451 31 17,792 16,678 27,241 5,10 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 31 20,182 17,726 35,37 35,37 15,049 629,53 36 12,1543 122,512 132,628 117,343 150,462 644,489 629,527 36 30 10,129 11,052 9,779 18,2% 52,461 34 36 13,06 20,6% 18,2% 644,489 629,527 | May | 31 | 2.316 | | 34,472 | 9,675 | | 60,284 | 58,814 | 1,471 | 2.4% | | 31 5,418 5,197 241 21,827 54,529 53,690 31 14,304 14,774 733 12,888 13,178 55,877 54,451 30 303 810 857 27,241 5,210 4,128 71,049 69,563 31 17,792 16,678 27,241 5,210 4,128 71,049 69,563 31 20,182 17,726 35,375 905 13,079 7,482 86,012 84,541 36 12,543 122,512 132,628 117,343 150,462 644,489 629,527 36 30 10,129 11,052 9,779 12,539 53,707 52,461 36 30 10,129 13,06 20,6% 18,2% 23,3% 100.0% 97.7% | line | 30 | 12,619 | | 942 | 14.724 | 14,320 | 55,926 | 54,564 | 1,363 | 2.4% | | 31 14,304 14,774 733 12,888 13,178 55,877 54,451 30 303 810 857 27,241 55,893 55,809 55,809 31 17,792 16,678 27,241 5,210 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 12,1543 17,726 353 9,196 566 48,024 46,598 18 365 12,543 122,512 132,628 117,343 150,462 644,489 629,527 34 10,129 10,129 11,052 9,779 18,2% 53,707 52,461 | Al II. | 31 | 5.418 | | 241 | 21,846 | 21,827 | 54,529 | 53,690 | 839 | 1.5% | | 30 303 810 857 27,543 27,474 56,987 55,809 31 17,792 16,678 27,241 5,210 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 15 20,182 17,726 35,37 35,379 46,598 46,598 15 36 12,543 122,512 132,628 117,343 150,462 644,489 629,527 36 30 10,129 10,029 11,052 9,779 12,539 53,707 52,461 15 48 18,0% 19,0% 20,6% 18,2% 23,3% 100.0% 97.7% | Aug | 31 | 14,304 | | 733 | 12,888 | 13,178 | 55,877 | 54,451 | 1,426 | 2.6% | | 13 17,792 16,678 27,241 5,210 4,128 71,049 69,553 30 29,170 35,375 905 13,079 7,482 86,012 84,541 15 20,182 17,726 353 9196 566 48,024 46,598 15 365 121,543 122,512 132,628 117,343 150,462 644,489 629,527 36 30 10,129 11,052 9,779 12,539 53,707 52,461 37,4 36 36 19,0% 20,6% 18,2% 23,3% 100.0% 97.7% | Sent | 30 | | | 857 | 27,543 | | 56,987 | 55,809 | 1,178 | 2.1% | | 30 29,170 35,375 905 13,079 7,482 86,012 84,541 46,598 31 20,182 17,726 353 9,196 566 48,024 46,598 46,598 365 121,543 122,512 132,628 11,7343 150,462 644,489 629,527 369 30 10,129 10,209 11,052 9,779 12,539 53,707 52,461 4754 N/A 18,9% 19,0% 20,6% 18,2% 23,3% 100,0% 97,7% | 1 200 | 34 | | | 27.241 | 5,210 | 4,128 | 71,049 | 69,553 | 1,496 | 2.1% | | 31 20,182 17,726 353 9,196 566 48,024 46,598 sis 365 121,543 122,512 132,628 117,343
150,462 644,489 629,527 1 rage 30 10,129 11,052 9,779 12,539 53,707 52,461 f Tot N/A 18,9% 19,0% 20,6% 18,2% 23,3% 100.0% 97.7% | No. | 30 | 29.170 | 35,375 | 902 | 13,079 | 7,482 | 86,012 | 84,541 | 1,471 | 1.7% | | ils 365 121,543 122,512 132,628 117,343 150,462 644,489 629,527 1 age 30 10,129 10,209 11,052 9,779 12,539 53,707 52,461 f Tot N/A 18,9% 20,6% 18,2% 23,3% 100.0% 97.7% | Dec | 31 | 20.182 | 17.726 | 353 | 9,196 | 266 | 48,024 | 46,598 | 1,425 | 3.0% | | e 30 10,129 10,209 11,052 9,779 12,539 53,707 54 N/A 18 9% 19.0% 20.6% 18.2% 23.3% 100.0% | Totals | 365 | 121 | 122,512 | 132,628 | 117,343 | 150,462 | 644,489 | 629,527 | 14,963 | N/A | | N/A 18 9% 19.0% 20.6% 18.2% 23.3% 100.0% | Average | 30 | 10 | | 11,052 | 6/1/6 | 12,539 | 53,707 | 52,461 | 1,247 | 2.3% | | | % of Tot. | N/A | 18 | 19.0% | 20.6% | 18.2% | 23.3% | 100.0% | %2'.26 | 2.3% | N/A | 1994 - Natural Gas Usage | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | Gas | Gas to Steam or Banking | Sanking | |----------|--------|------------|------------|------------|------------|------------|---------|-------------|-------------------------|----------| | Month | # Davs | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | Steam (mcf) | Bank (mcf) | Bank (%) | | rel. | | | | 0 | 344 | 353 | 18,061 | 17,186 | 875 | 4.8% | | Feb | 28 | 13.138 | | 19,905 | 742 | 358 | 36,428 | 35,763 | 999 | 1.8% | | March | 31 | 10,427 | | 75,322 | 533 | 570 | 91,325 | 89,926 | 1,400 | 1.5% | | April | 30 | 27,983 | 39,617 | 943 | 4,669 | 2,940 | 76,152 | 74,708 | 1,444 | 1.9% | | May | 31 | 31.343 | 37,754 | 1,011 | 95 | 1,890 | 72,092 | 70,518 | 1,574 | 2.5% | | - line | 30 | | | 1,052 | 4,742 | 19,582 | 50,733 | 49,100 | 1,634 | 3.5% | | Aluly. | 34 | | | 1,007 | 562 | 22,361 | 52,624 | 50,982 | 1,642 | 3.1% | | Aug | 3 | 13.610 | | 1,016 | 10,507 | 2,587 | 58,449 | 56,843 | 1,606 | 2.7% | | Sent | 30 | 20.738 | | 482 | 12,152 | 431 | 56,463 | 55,160 | 1,303 | 2.3% | | Oct | 31 | 5.722 | | 9,702 | 11,265 | 16,249 | 61,444 | 60,661 | 783 | 1.3% | | Nov | 30 | 927 | 1,001 | 63,968 | 1,622 | 948 | 68,467 | 66,739 | 1,728 | 2.5% | | Dec | 31 | 1.107 | | 2,540 | 4,111 | 2,873 | 14,298 | 13,028 | 1,270 | 8.9% | | Totals | 365 | | 16 | 176,947 | 51,345 | 71,140 | 656,537 | 640,613 | 15,924 | A/A | | Average | 30 | | 15,879 | 14,746 | 4,279 | 5,928 | 54,711 | 53,384 | 1,327 | 2.4% | | % of Tot | A/N | | 29.0% | 27.0% | 7.8% | 10.8% | 100.0% | 97.6% | 2.4% | N/A | ## 1993/1994 Natural Gas Banking Totals Log Data – Boilers #1 thru #6 Table 4.2.5 1993 – Natural Gas Banking | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|--------| | Month | # Days | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | | Jan | 31 | 208 | 235 | 0 | 512 | 160 | 1,115 | | Feb | 82 | 198 | 198 | 0 | 384 | 0 | 780 | | March | 31 | 240 | 205 | 0 | 400 | 186 | 1,031 | | April | 99 | 105 | 82 | 439 | 413 | 330 | 1,368 | | May | 31 | 258 | 261 | 307 | 282 | 363 | 1,471 | | June | 99 | 149 | 142 | 808 | 225 | 39 | 1,363 | | July | 31 | 214 | 208 | 241 | 85 | 91 | 668 | | Aug | 31 | 30 | 142 | 733 | 259 | 262 | 1,426 | | Sept | 30 | 221 | 100 | 857 | 0 | 0 | 1,178 | | Oct | 31 | 111 | 112 | 546 | 313 | 414 | 1,496 | | Nov | 8 | 0 | 0 | 902 | 195 | 371 | 1,471 | | Dec | 31 | 31 | 154 | 353 | 322 | 266 | 1,425 | | Totals | 365 | 1,763 | 1,839 | 5,189 | 3,391 | 2,782 | 14,963 | | Average | 301 | 147 | 153 | 432 | 283 | 232 | 1,247 | | % of Tot. | N/A | 11.8% | 12.3% | 34.7% | 22.7% | 18.6% | 100.0% | # 1994 - Natural Gas Banking | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|--------| | Month | # Days | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | (mcf) | | Jan | 31 | | 61 | 0 | 344 | 353 | 875 | | Feb | 28 | 25 | 112 | 0 | 252 | 277 | 999 | | March | 31 | 147 | 150 | 0 | 533 | 220 | 1,400 | | April | 30 | 14 | 0 | 943 | 103 | 382 | 1,444 | | May | 31 | 0 | 0 | 1,011 | 36 | 468 | 1,574 | | June | 30 | 72 | 0 | 1,052 | 429 | 85 | 1,634 | | July | 31 | 49 | 25 | 1,007 | 295 | 0 | 1,642 | | Aug | 31 | 117 | 0 | 1,016 | 315 | 157 | 1,606 | | Sept | 30 | 47 | 42 | 482 | 305 | 431 | 1,303 | | Oct | 31 | 169 | 69 | 116 | 222 | 208 | 783 | | Nov | 30 | 211 | 274 | 0 | 610 | 633 | 1,728 | | Dec | 31 | 220 | 137 | 06 | 352 | 472 | 1,270 | | Totals | 365 | 1,185 | 870 | 5,716 | 4,119 | 4,035 | 15,924 | | Average | 30 | 66 | 72 | 476 | 343 | 336 | 1,327 | | % of Tot. | A/N | 7.4% | 2.5% | 35.9% | 72.9% | 25.3% | 100.0% | | | | | | | | | | During the auditing of the billing and usage histories, discrepancies were determined between the billing data and the boiler log data for natural gas. A graphical comparison of the two is shown in Figure 4.2.7 for 1994. An additional comparison is done in Table 4.2.8. In this table ratios are used in an attempt to derive trends which might aid in determining the differences. The trend evident in Figure 4.2.7 shows that the largest discrepancies in 1994 occurred in the months from April through September. Identifying the actual cause for these discrepancies from analyzing Figures 4.2.5 or 4.2.6 would only be speculative. Further evaluation of both sets of data has led Entech to use the boiler log information for determining efficiencies and/or savings. These will be shown, and discussed later in the report. As for the costs, the \$3.53/mcf unit cost, determined from the Frederick Gas Company billings, will be used when calculating savings with individuals ECOs. 4-9 ### GAS USAGE COMPARSION Table 4.2.8 # 1993 BOILER LOGS/FREDERICK LOGS | | | Boiler Logs | | | Frederick Bills | ills | Diff. | Diff. Totals | Ratio | |---------|--------|-------------|-----------|--------|-----------------|-----------|-------------|--------------|-----------| | | Total | 1993 | 1993 | Total | 1993 | 1993 | 1993 | 1993 | 1993 | | Month | # Davs | Totals(mcf) | (mcf/day) | # Days | Totals(mcf) | (mcf/day) | Totals(mcf) | (mcf/day) | (mcf/day) | | lan. | 31 | 21.587 | 969 | 29 | 22,220 | 992 | (683) | (20) | 0.91 | | Feb | 28 | 18,332 | 655 | 31 | 21,030 | 678 | (2,698) | (24) | 76.0 | | March | 31 | 40,041 | 1,292 | 30 | 37,010 | 1,234 | 3,031 | 58 | 1.05 | | April | 30 | 75,842 | 2,528 | 30 | 74,820 | 2,494 | 1,022 | 34 | 1.01 | | Mav | 31 | 60,284 | 1,945 | 28 | 53,150 | 1,898 | 7,134 | 46 | 1.02 | | June | 30 | 55,926 | 1,864 | 33 | 55,730 | 1,689 | 196 | 175 | 1.10 | | >Inf | 31 | 54,529 | 1,759 | 30 | 50,080 | 1,669 | 4,449 | 06 | 1.05 | | And | 31 | 55,877 | 1,802 | 32 | 51,760 | 1,618 | 4,117 | 185 | 1.1 | | Sept | 30 | 56,987 | 1,900 | 30 | 55,070 | 1,836 | 1,917 | 64 | 1.03 | | Oct | 3.5 | 71,049 | 2,292 | 29 | 59,560 | 2,054 | 11,489 | 238 | 1.12 | | N C | 30 | 86,012 | 2.867 | 30 | 78,620 | 2,621 | 7,392 | 246 | 1.09 | | Dec | 34 | 48.024 | 1,549 | 99 | 39,700 | 1,323 | 8,324 | 226 | 1.17 | | Totals | 365 | 644,489 | 21,149 | 362 | 598,750 | 19,880 | 45,739 | 1,269 | 1.06 | | Average | 30.42 | | 1,762 | 30.17 | 49,896 | 1,657 | 3,812 | 106 | 1.06 | | | | | | | | | | | | # 1994 BOILER LOGS/FREDERICK LOGS | | | Boiler Logs | | | Frederick Bills | ills | Diff. | Diff. Totals | Ratio | |---------|--------|-------------|-----------|--------|-----------------|-----------|-------------|--------------|-----------| | | Total | 1994 | 1994 | Total | 1994 | 1994 | 1994 | 1994 | 1994 | | Month | # Davs | Totals(mcf) | (mcf/dav) | # Days | Totals(mcf) | (mcf/day) | Totals(mcf) | (mcf/day) | (mcf/day) | | .lan | 31 | 18,061 | 583 | 32 | 18,803 | 588 | (742) | (2) | 0.99 | | Feb | 28 | 36,428 | 1,301 | 28 | 33,527 | 1,197 | 2,901 | 104 | 1.09 | | March | 31 | 91,325 | 2,946 | 31 | 292'06 | 2,922 | 759 | 24 | 1.01 | | April | 30 | 76,152 | 2,538 | 59 | 66,430 | 2,291 | 9,722 | 248 | <u>+</u> | | Mav | 31 | 72,092 | 2,326 | 32 | 63,276 | 1,977 | 8,816 | 348 | 1.18 | | June | 30 | 50,733 | 1,691 | 30 | 46,638 | 1,555 | 4,096 | 137 | 1.09 | | \Int | 31 | 52,624 | 1,698 | 53 | 43,694 | 1,507 | 8,930 | 191 | 1.13 | | Aug | 31 | 58,449 | 1,885 | 33 | 53,261 | 1,614 | 5,188 | 271 | 1.17 | | Sept | 9 | 56.463 | 1,882 | 30 | 50,118 | 1,671 | 6,345 | 211 | 1.13 | | i to | 34 | 61,444 | 1,982 | 31 | 60,033 | 1,937 | 1,411 | 46 | 1.02 | |) N | 30 | 68,467 | 2,282 | 30 | 68,437 | 2,281 | 99 | - | 1.00 | | Dec | 3 | 14,298 | 461 | 30 | 13,885 | 463 | 414 | (2) | 1.00 | | Totals | 365 | 99 | 21,575 | 365 | 699'809 | 20,001 | 47,868 | 1,574 | 1.08 | | Average | 30.42 | 54,711 | 1,798 | 30.42 | 50,722 | 1,667 | 3,989 | 131 | 1.08 | | | | | | | | | | | | ### 4.3 Fuel Oil Fort Detrick utilizes No. 6 fuel oil as a secondary fuel for steam production. According to Fort Detrick facility personnel, the incremental cost of purchasing No. 6 fuel oil from the Defense Fuel Supply Center is \$0.42 per gallon. This value will be used when determining ECO cost savings. The Boiler Plant daily log data is the source for tracking the history of No. 6 fuel oil use Table 4.3.1 totals the usage and costs for 1994. Figure 4.3.2 graphically displays the individual boiler usage for 1994, and Table 4.3.3 summarizes the monthly information for 1993 and 1994 by boiler. Table 4.3.4 reflects the fuel oil used for banking. Figure 4.3.5 graphically compares the two years. Frederick Gas Company allows Fort Detrick to be on the interruptible rate as long as a significant part of the steam load in the winter is fired by fuel oil. The boiler plant operators accomplish this by base loading Boiler No. 3, the largest boiler, on No. 6 fuel oil from December to March. Entech Engineering, Inc. 4-12 ### No. 6 Fuel Oil 1994 Usage and Cost Summary Figure 4.3.1 | Month | Gallons | Cost | |-----------|-----------|-----------| | January _ | 699,269 | \$293,700 | | February | 413,326 | \$173,600 | | March | 0 | \$0 | | April | 0 | \$0 | | May | 0 | \$0 | | June | 524 | \$220 | | July | 0 | \$0 | |
August | 0 | \$0 | | September | 0 | \$0 | | October | 44,476 | \$18,680 | | November | 0 | \$0 | | December | 487,976 | \$204,950 | | Total | 1,645,571 | \$691,150 | ### 1993/1994 No. 6 Oil Usage Log Data - Boilers #1 thru #6 Table 4.3.3 1993 - No. 6 Oil Usage | | Total Boiler | Boiler # 1 | Boiler # 2 | Boiler # 2 Boiler # 3 | Boiler # 5 | Boiler # 5 Boiler # 6 | Total | ö | Oil to Steam or Banking | 3anking | |-----------|--------------|------------|------------|-----------------------|------------|-----------------------|-----------|-------------|-------------------------|----------| | Month | # Davs | | (dal) | (dal) | (dal) | (dal) | (gal) | Steam (gal) | Bank (gal) | Bank (%) | | 11 | 31 | 0 | 0 | 497,929 | 0 | 0 | 497,929 | 497,929 | 0 | %0.0 | | Feb | 28 | 13,395 | 10.506 | 508,519 | 1,150 | 12,405 | 545,975 | 543,767 | 2,208 | 0.4% | | March | 31 | 814 | | 312,982 | 1,238 | 21,166 | 369,272 | 366,959 | 2,313 | %9.0 | | April | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Mav | 31 | 0 | 0 | 23,512 | 0 | 0 | 23,512 | 23,482 | င္က | 0.1% | | , lune | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | \hill. | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Aug | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Sent | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Oct | 31 | 250 | 274 | 0 | 11,359 | 16,313 | 28,196 | 27,188 | 1,008 | | | Nov | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0'0 | | Dec | 31 | 0 | 0 | 353,891 | 7,970 | 7,830 | 369,691 | 369,691 | 0 | %0:0 | | Totals | 365 | 14,459 | 43,852 | 1,696,833 | 21,717 | 57,714 | 1,834,575 | 1,829,016 | 5 | N/A | | Average | 30 | 1,205 | 3,654 | 141,403 | 1,810 | 4,810 | 152,881 | 152,418 | 463 | 0.3% | | % of Tot. | N/A | 0.8% | 2.4% | 92.5% | 1.2% | 3.1% | 100.0% | %2'66 | 0.3% | N/A | 1994 - No. 6 Oil Usage | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 Boiler # 5 Boiler # 6 | Boiler # 5 | Boiler # 6 | Total | Oil | Oil to Steam or Banking | Banking | |----------|--------|------------|------------|----------------------------------|------------|------------|-----------|-------------|-------------------------|----------| | Month | # Davs | (aa | (dal) | | (gal) | (gal) | (gal) | Steam (gal) | Bank (gal) | Bank (%) | | ne] | 3 | | | 537.103 | 777.77 | 70,499 | 699,269 | 696,498 | 2,771 | 0.4% | | T T | 80 | | | 317,595 | 54.822 | 38,104 | 413,326 | 409,470 | 3,856 | %6.0 | | March | 34 | | | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Anril | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0:0 | | May | 3 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | - II In | 30 | 0 | 0 | 0 | 524 | 0 | 524 | 524 | 0 | %0.0 | | Alth | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | Aug | 9 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | tu de | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | 300 | 34 | 1,682 | 7.020 | 0 | 9,576 | 26,198 | 44,476 | 44,446 | 30 | 0.1% | | S ON | 30 | | | 0 | 0 | 0 | 0 | 0 | 0 | %0.0 | | 200 | 3 6 | O | 9.760 | 433.595 | 22,078 | 22,543 | 487,976 | 487,922 | 54 | %0.0 | | Totals | 365 | 5.582 | ľ | 1,288,293 | 164,777 | 157,344 | 1,645,571 | 1,638,860 | 6,711 | N/A | | Average | 30 | | | 107,358 | 13,731 | 13,112 | 137,131 | 136,572 | 559 | 0.4% | | % of Tot | NAN | | 1.8% | 78.3% | 10.0% | %9'6 | 100.0% | %9.66 | 0.4% | N/A | | | | | | | | | | | | | 1993/1994 No. 6 Oil Banking Log Data – Boilers #1 thru #6 Table 4.3.4 1993 – No. 6 Oil Banking | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|--------| | Month | # Days | (gal) | (gal) | (gal) | (gal) | (gal) | (gal) | | Jan | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | Feb | 28 | 255 | 244 | 0 | 1,150 | 526 | 2,208 | | March | 31 | 814 | 0 | 0 | 1,238 | 261 | 2,313 | | April | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | May | 31 | 0 | 0 | 30 | 0 | 0 | 30 | | June | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | July | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | Aug | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | Sept | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | Oct | 31 | 250 | 274 | 0 | 484 | 0 | 1,008 | | Nov | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | Dec | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | Totals | 365 | 1,319 | 518 | 30 | 2,872 | 820 | 5,559 | | Average | 30 | 110 | 43 | ဂ | 239 | 89 | 463 | | % of Tot. | N/A | 23.7% | 9.3% | 0.5% | 51.7% | 14.8% | 100.0% | 1994 - No. 6 Oil Banking | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|--------| | Month | # Days | (gal) | (gal) | (gal) | (gal) | (gal) | (gal) | | Jan | 31 | 1,505 | 1,230 | 0 | 14 | 22 | 2,771 | | Feb | 28 | 1,430 | 1,375 | 0 | 323 | 728 | 3,856 | | March | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | April | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | May | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | June | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | July | 31 | 0 | 0 | 0 | 0 | 0 | 0 | | Aug | 31 | 0 | 0 | 0 | 0. | 0 | 0 | | Sept | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | Oct | 31 | 30 | 0 | 0 | 0 | 0 | 30 | | Nov | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | Dec | 31 | 0 | 0 | 54 | 0 | 0 | 54 | | Totals | 365 | 2,965 | 2,605 | 54 | 337 | 150 | 6,711 | | Average | 30 | 247 | 217 | 5 | 28 | 63 | 559 | | % of Tot. | N/A | 44.2% | 38.8% | %8.0 | 2.0% | 11.2% | 100.0% | ### 4.4 Steam Production The boiler plant provides steam to the Fort Detrick Army Facilities and the National Cancer Institute (NCI) facilities located within the site perimeter. Like natural gas and fuel oil, steam production is also tracked by the boiler plant operators in their daily logs. Figure 4.4.1 graphically reflects the steam production for 1994 by month and boiler. Table 4.4.2 details the steam production of each boiler by month, for 1993 and 1994. Figure 4.4.3 is a graphical comparison of the monthly totals for 1993 and 1994. Entech Engineering, Inc.- # 1993/1994 Steam Generation Log Data – Boilers #1 thru #6 Table 4.4.2 1993 - Steam Generation | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|---------| | Month | # Days | (mlbs) | (mlbs) | (mlbs) | (mlbs) | (mlbs) | (mlbs) | | Jan | 31 | 2,489 | 2,266 | 57,576 | 195 | 12,014 | 74,540 | | Feb | 28 | 1,624 | 1,401 | 57,447 | 761 | 14,715 | 75,948 | | March | 31 | 2,818 | 5,423 | 57,695 | 132 | 9,198 | 75,266 | | April | 30 | 12,685 | 12,098 | 32,554 | 0 | 8/6'9 | 64,315 | | May | 31 | 1,647 | 1,851 | 29,181 | 7,228 | 8,431 | 48,338 | | June | 30 | 9,725 | 10,321 | 29 | 11,278 | 10,910 | 42,261 | | July | 31 | 4,117 | 3,937 | 0 | 16,504 | 20,295 | 44,852 | | Aug | 31 | 11,409 | 11,747 | 0 | 9,371 | 11,113 | 43,639 | | Sept | 30 | 68 | 571 | 0 | 20,045 | 22,174 | 42,857 | | Ö | 31 | 14,108 | 13,398 | 21,035 | 4,691 | 5,001 | 58,234 | | Nov | 30 | 23,324 | 28,462 | 0 | 9,659 | 5,908 | 67,352 | | Dec | 31 | 16,104 | 14,146 | 40,792 | 7,485 | 775 | 79,301 | | Totals | 365 | 100,117 | 105,618 | 296,309 | 87,348 | 127,511 | 716,903 | | Average | 30 | 8,343 | 8,802 | 24,692 | 7,279 | 10,626 | 59,742 | | % of Tot. | N/A | 14.0% | 14.7% | 41.3% | 12.2% | 17.8% | 100.0% | 1994 - Steam Generation | | Total | Boiler # 1 | Boiler # 2 | Boiler # 3 | Boiler # 5 | Boiler # 6 | Total | |-----------|--------|------------|------------|------------|------------|------------|---------| | Month | # Days | (mlbs) | (mlbs) | (mlbs) | (mlbs) | (mlbs) | (mlbs) | | Jan | 31 | 4,195 | 11,185 | 60,402 | 7,920 | 7,766 | 91,468 | | Feb | 28 | 10,529 | 1,752 | 50,866 | 5,748 | 4,407 | 73,302 | | March | 31 | 8,274 | 3,428 | 60,869 | 0 | 0 | 72,571 | | April | 30 | 22,416 | 32,033 | 0 | 3,378 | 2,561 | 60,387 | | May | 31 | 25,155 | 30,158 | 0 | 0 | 1,575 | 56,888 | | June | 30 | 17,937 | 2,262 | 0 | 3,527 | 16,364 | 40,090 | | July | 31 | 10,871 | 12,104 | 0 | 0 | 16,951 | 39,926 | | Aug | 31 | 10,808 | 24,700 | 0 | 7,289 | 1,656 | 44,452 | | Sept | 30 | 17,059 | 18,935 | 0 | 8,105 | 0 | 44,099 | | Oct | 31 | 4,916 | 17,489 | 7,167 | 8,961 | 14,828 | 53,362 | | Nov | 30 | 614 | 099 | 50,019 | 791 | 467 | 52,550 | | Dec | 31 | 692 | 4,651 | 47,766 | 4,847 | 4,269 | 62,302 | | Totals | 365 | 133,543 | 159,355 | 277,088 | 995'05 | 70,844 | 691,397 | | Average | 30 | 11,129 | 13,280 | 23,091 | 4,214 | 5,904 | 57,616 | | % of Tot. | N/A | 19.3% | 23.0% | 40.1% | 7.4% | 10.2% | 100.0% | | | | | | | | | | ## 4.5 Electricity Potomac Edison Company provides power to Fort Detrick. Electricity is supplied at 13,200 volts to Fort Detricks three (3) perimeter substations and then is distributed to the entire site. The site's monthly billing and service contract can be referenced in Attachment 8.2. Table 4.5.1 displays the electric billing history for 1993 and 1994. All data has been extracted from the actual electric bills, which can be referenced in Attachment 8.2. Supplemental information and meter readings pertaining to the boiler plant are also provided. Table 4.5.2 includes this data in addition to estimated demands and costs. The boiler plant personnel record the monthly usage for the plant itself from a dedicated meter. The boiler plant demand estimates are a direct result of the Electric Model, discussed later in the report. Entech Engineering, Inc. THE POTOMAC EDISON COMPANY SITE ELECTRIC USAGE & COSTS JANUARY 1993-DECEMBER 1994 ACCOUNT #212160000720017 Table 4.5.1 | JANOAR I 1993 - DECEMBER 1993 (SILE IZECINIC DITTING) | 77.7 | THE PROPERTY. | JAN DESKY | | (2) | | - | | | | |---|------|---------------|-----------|--------------|-------------|-------------|---------|---------|----------|---------| | | Jo # | Demand kW | Demand kW | Demand kW | Usage Total | Cost | Cost | Energy | Cost | kWh | | Month | Days | (Actual) | (Billed) | (Difference) | kWh | 69 | \$/kWh | mmBtu | \$/mmBtu | Per Day | | January | 33 | 15,826 | 17,766 | 1,940 | 000'92'6 | \$334,572 | \$0.035 | 32,683 | \$10.24 | 290,182 | | February | 30 | 15,538 | 17,766 | 2,228 | 8,904,000 | \$321,126 | \$0.036 | 30,389 | \$10.57 | 296,800 | | March | 29 | 15,221 | 17,766
 2,545 | 8,496,000 | \$322,580 | \$0.036 | 30,389 | \$10.57 | 307,034 | | April | 32 | 18,216 | 18,216 | 0 | 10,344,000 | \$365,050 | \$0.038 | 28,997 | • | 265,500 | | May | 29 | 21,240 | 21,240 | 0 | 10,608,000 | \$396,087 | \$0.035 | 35,304 | •• | 356,690 | | June | 30 | 23,429 | 23,429 | 0 | 11,904,000 | \$441,067 | \$0.037 | 36,205 | | 353,600 | | July | 32 | 25,214 | 25,214 | 0 | 14,664,000 | \$513,329 | \$0.037 | | | 372,000 | | August | 29 | 23,890 | 23,890 | 0 | 12,864,000 | \$465,720 | \$0.035 | | | 505,655 | | September | 30 | 24,725 | 24,725 | 0 | 12,792,000 | \$469,922 | \$0.036 | 43,905 | \$10.61 | 428,800 | | October | 31 | 18,893 | 18,893 | 0 | 10,392,000 | \$379,219 | \$0.037 | 43,659 | \$10.76 | 412,645 | | November | 30 | 18,763 | 116,811 | 148 | 9,432,000 | \$358,965 | \$0.036 | 35,468 | \$10.69 | 346,400 | | December | 33 | 15,595 | 116,81 | 3,316 | 9,768,000 | \$365,970 | \$0.037 | 33,338 | \$10.98 | 296,000 | | AVERAGE | 31 | 19,713 | 20,561 | 848 | 10,812,000 | \$394,467 | \$0.036 | 36,751 | \$10.73 | 352,565 | | TOTALS | 368 | 236,550 | 246,727 | 10,177 | 129,744,000 | \$4,733,609 | N/A | 442,816 | N/A | N/A | | | Jo# | # of Demand kW | Demand kW | Demand kW | Usage Total | Cost | Cost | Energy | Cost | kWh | |-----------|------|----------------|-----------|--------------|-------------|-------------|---------|---------|----------|---------| | Month | Days | (Actual) | (Billed) | (Difference) | kWh | S | \$/kWh | mmBtu | \$/mmBtu | Per Day | | January | 30 | 15,451 | 116,81 | 3,460 | 9,072,000 | \$358,329 | \$0.039 | 30,963 | 11.57 | 302,400 | | February | 30 | 15,638 | 18,911 | 3,273 | 9,144,000 | \$367,369 | \$0.040 | 31,208 | 11.77 | 304,800 | | March | 31 | 17,856 | 118,911 | 1,055 | 9,312,000 | \$371,148 | \$0.040 | 31,208 | 11.77 | 294,968 | | April | 30 | 20,534 | 20,534 | 0 | 10,080,000 | \$402,775 | \$0.040 | 31,782 | 11.68 | 310,400 | | May | 29 | 20,966 | 20,966 | 0 | 10,296,000 | \$426,620 | \$0.040 | 34,403 | 11.71 | 347,586 | | June | 32 | 24,854 | 24,854 | 0 | 13,536,000 | \$543,381 | \$0.041 | 35,140 | 12.14 | 321,750 | | July | 30 | 25,070 | 25,070 | 0 | 14,088,000 | \$558,949 | \$0.040 | 46,198 | 11.76 | 451,200 | | August | 29 | 23,818 | 23,818 | 0 | 12,840,000 | \$518,122 | \$0.040 | 48,082 | 11.62 | 485,793 | | September | 32 | 23,040 | | 0 | 12,984,000 | \$513,807 | \$0.040 | 43,823 | 11.82 | 401,250 | | October | 29 | 21,614 | 21,614 | 0 | 10,224,000 | \$435,637 | \$0.040 | 44,314 | 11.59 | 447,724 | | November | 31 | 19,310 | 19,310 | 0 | 10,080,000 | \$423,266 | \$0.043 | 34,895 | 12.48 | 329,806 | | December | 32 | 16,819 | 18,803 | 1,984 | 9,600,000 | \$406,809 | \$0.042 | 32,765 | 12.42 | 300,000 | | AVERAGE | 30 | 20,414 | 21,229 | 814 | 10,938,000 | \$443,851 | \$0.041 | 37,065 | \$11.97 | 359,605 | | TOTALS | 365 | 244,970 | 254,742 | 9,772 | 131,256,000 | \$5,326,210 | V/V | 447,977 | A/A | N/A | # BOILER PLANT – BLDG. 190 ELECTRIC USAGE JANUARY 1993 – DECEMBER 1994 TABLE 4.5.2 | Month post Demand kW Metered Usage Est. Cost Energy January 33 253 130,400 \$5,399 \$0.041 44 February 30 253 144,000 \$5,399 \$0.041 44 March 29 253 136,000 \$5,539 \$0.041 49 April 32 203 117,600 \$5,123 \$0.031 46 June 30 148 93,600 \$3,574 \$0.038 44 July 32 148 84,000 \$3,343 \$0.040 28 August 29 148 85,600 \$3,340 \$0.039 28 September 30 148 86,400 \$3,340 \$0.039 29 | # of Demand kW | | | | | ţ | 1444 | |---|----------------|---------------|-----------|---------|--------|-----------|---------| | ionth Days ary 33 lary 30 h 29 h 29 k 32 st 29 st 29 st 29 | | Metered Usage | Est. Cost | Cost | Energy | Est. Cost | KWN | | ary tary h st | (Estimated) | kWh | 89 | \$/kWh | mmBtu | \$/mmBtu | Per Day | | lary
h
st
mber | 253 | 130,400 | \$5,399 | \$0.041 | 445 | \$12.13 | 3,952 | | h
Ist
mber | 253 | 144,000 | \$5,725 | \$0.040 | 491 | \$11.65 | 4,800 | | ist
mber | 253 | 136,000 | \$5,533 | \$0.041 | 491 | \$11.65 | 4,966 | | st
mber | 203 | 137,600 | \$5,123 | \$0.037 | 464 | \$11.92 | 4,250 | | st | 203 | 129,600 | \$4,931 | \$0.038 | 470 | \$10.91 | 4,745 | | st
smber | 148 | 93,600 | \$3,574 | \$0.038 | 442 | \$11.15 | 4,320 | | ıst
amber | 148 | 84,000 | \$3,343 | \$0.040 | 319 | \$11.19 | 2,925 | | | 148 | 85,600 | \$3,382 | \$0.040 | 287 | \$11.66 | 2,897 | | | 148 | 86,400 | \$3,401 | \$0.039 | 292 | \$11.58 | 2,853 | | October 31 | 203 | 86,400 | \$3,894 | \$0.045 | 295 | \$11.53 | 2,787 | | November 30 | 203 | 122,400 | \$4,758 | \$0.039 | 295 | \$13.21 | 2,880 | | December 33 | 253 | 128,000 | \$5,341 | \$0.042 | 437 | \$12.23 | 3,879 | | AVERAGE 30.67 | 201 | 113,667 | \$4,534 | \$0.040 | 394 | \$11.50 | 3,707 | | TOTALS 368 | 2.416 | 1,364,000 | \$54,405 | N/A | 4,655 | N/A | N/A | Note: 1993 Costs are based on 1994 incremental rates | JANUARY 1 | 994-1 | DECEMBER . | JANUARY 1994 DECEMBER 1994 (EST. BLDG. 190 ELECTRIC BILLING) | OG. 190 ELE | CTRICE | (ILLING) | | | |-----------|-------|-------------|--|-------------|---------|----------|----------|---------| | | Jo# | Demand kW | Usage Total | Est. Cost | Cost | Energy | Cost | kWh | | Month | Days | (Estimated) | kWh | S | \$/kWh | mmBtu | \$/mmBtu | Per Day | | January | 30 | 253 | 150,400 | \$5,879 | \$0.039 | 513 | 11.45 | 5,013 | | February | 30 | 253 | 138,400 | \$5,591 | \$0.040 | 472 | 11.84 | 4,613 | | March | 31 | 253 | 132,000 | \$5,437 | \$0.041 | 472 | 11.84 | 4,465 | | April | 30 | 203 | 106,400 | \$4,374 | \$0.041 | 451 | 12.07 | 4,400 | | May | 59 | 203 | 111,200 | \$4,490 | \$0.040 | 363 | 12.05 | 3,669 | | June | 32 | 148 | 86,400 | \$3,401 | \$0.039 | 380 | 11.83 | 3,475 | | July | 30 | 148 | 85,600 | \$3,382 | \$0.040 | 295 | 11.53 | 2,880 | | August | 29 | 148 | 100,000 | \$3,727 | \$0.037 | 292 | 11.58 | 2,952 | | September | 32 | 148 | 91,200 | \$3,516 | \$0.039 | 341 | 10.92 | 3,125 | | October | 29 | 203 | 112,000 | \$4,509 | \$0.040 | 311 | 11.30 | 3,145 | | November | 31 | 203 | 107,200 | \$4,394 | \$0.041 | 382 | 11.79 | 3,613 | | December | 32 | 253 | 124,800 | \$5,264 | \$0.042 | 456 | 12.36 | 3,900 | | AVERAGE | 30.42 | 201 | 112,133 | \$4,497 | \$0.040 | 392 | \$11.48 | 3,687 | | TOTALS | 365 | 2,416 | 1,345,600 | \$53,964 | N/A | 4,593 | N/A | N/A | 4.5.1 Incremental Cost Entech Engineering developed a Lotus spreadsheet computer program to determine the incremental cost for electricity. Using actual billing data, usage and demand are imputed into the program, and the bill is calculated. The computer calculation should match the utility's bill. To calculate the incremental cost for billing demand, the electric bill is then re-calculated using one less kW of demand. The cost difference between the actual bill and the bill calculated with one less kW is considered to be the incremental cost for demand (\$/kW). The same procedure is performed for usage (kWh). The bill is calculated using one less kWh, with the difference in the two costs being the incremental usage cost (\$/kWh). For this facility, the incremental cost for electricity is as follows: Rate GP, Incremental Costs Demand \$/kW On-Peak % Wh = \$0.024 The incremental costs will be used in calculations of the electric, light, and heat loss models, for Energy Conservation Opportunities (ECOs) related to this report. The use of incremental rates is reasonably accurate for calculating cost savings due to small changes in demand and usage (±25%) from existing levels. The use of incremental rates is less accurate in calculating cost Entech Engineering, Inc.- savings with larger changes in demand and usage (>25%) and tends to underestimate savings slightly (usually less than 2%). However, for the convenience of calculating the feasibility of various options, the use of incremental rates for demand and usage is either accurate or slightly conservative (savings not overestimated) and is therefore prudent. Copies of the calculations of the incremental cost, and typical monthly bill are included in the Attachments 8.3. ## 4.5.2 Electric Usage Electric usage is measured in kilowatt hours (kWh). One kWh is equivalent to the usage of 1,000 watts of electricity for one hour. Figure 4.5.2.1 graphically shows the 1993 and 1994 electric usage profiles of Fort Detrick. The usage profiles for the two year associated with the boiler plant is depicted in Figure 4.5.2.2. ## 4.5.3 Monthly Demand Electrical demand is the highest rate of electrical energy used during a specified time interval (normally 30 minutes). The measurement of electric demand is expressed as kilowatts (1,000 watts). Electrical demand is not necessarily related to the amount of time the electrical components are in operation. The site monthly demand total shown in Table 4.5.1 are from the actual bills, while the boiler plant monthly demands shown in Table 4.5.2 are estimated, and based on calculations associated with determining the electric use model for boiler plant. Details of this calculation are discussed later in the Energy Models Section. 4-26 ## 4.6 Energy Cost and Usage Summary ## 4.6.1 General The boiler plant uses a
significant amount of natural gas and No. 6 fuel oil to heat their steam. In addition, the plant consumes its fair share of electricity relative to its size. The following section is a summary of the boiler plant's energy costs and usage totals ## 4.6.2 Total Energy Costs and Energy Incremental Costs The total energy costs and incremental costs associated with operating the boiler plant are as follows in Table 4.6.2.1. Figure 4.6.2.2 is also provided to give a graphical look at the impact of the individual total energy costs. ## Summary of Energy Costs and Incremental Costs for Boiler Plant Table 4.6.2.1 | Energy Source | Cost | Percent | Incremental Cost | |----------------|-------------|---------|---------------------| | Natural Gas | \$2,146,135 | 74% | \$3.53/mcf | | No. 6 Fuel Oil | \$691,150 | 24% | \$0.42/gal | | Electricity | \$53,964 | 2% | \$8.97/kW (Demand) | | | | | \$0.024 kWh (Usage) | | Total | \$2,891,249 | | | Note: The gas cost total shown above reflects the costs billed by Frederick Gas to Fort Detrick. Gas costs as listed in the ECOs will differ because the mcf totals used are from the Boiler logs. ## 4.6.3 Incremental Energy Cost for Steam Based on the boiler log data and the fuel incremental rates determined previously, the incremental rate for \$/mlbs of steam produced is \$4.35/mlb. Natural Gas = $$656,537 \text{ mcf/yr}$$ No. 6 Fuel Oil = $$1,645,571 \text{ gal/yr}$$ Steam Incremental Rate = $$$4.35/mlbs$$ $$\frac{656,537\frac{mcf}{yr} \times \frac{\$5.53}{mcf} + 1,645,571\frac{gat}{yr} \times \frac{\$0.42}{gal}}{691,597\frac{mlbs}{yr}} = \$4.35/mlbs$$ This cost is for information only and is not used in ECOs because of the special requirements of the Life Cycle Analyses. ## 4.6.4 Total Energy (mmBtu) The total energy in mmBtu used by the boiler plant is shown in Table 4.6.4.1. Total Energy Usage in Boiler Plant Table 4.6.4.1 | Energy Source | Total Usage (log) | Conversion | mmBtu/yr | |-------------------------|-------------------|-----------------|----------| | Natural Gas (mcf/yr) | 656,537 | 1.03 mmBtu/mcf | 676,233 | | No. 6 Fuel Oil (gal/yr) | 1,645,571 | 149,690 btu/gal | 246,325 | | Electricity (kW/yr) | 1,345,600 | 3,413 btu/kW | 4,592 | | Total | | | 927,150 | ### 5.0 ENERGY MODELS ## 5.1 General Measured data about steam production and energy consumption (gas, oil and electricity) at the boiler plant were presented in the billing history section of this study. In this section of the report Entech examines how the steam produced and energy consumed is utilized. Before evaluating ECOs it is essential to understand the energy consumption patterns and how each type of energy user contributes to the overall boiler plant energy use and cost. As described in the Methodology Section of this report, the steam use model which is a summary of the nine individual models, the fuel use model, the lighting model and the electric model will be employed during this task. ## 5.2 Space Heating The space heating load for each of the buildings connected to the steam system was estimated based on building information collected during Entech's December site survey, as described in the Methodology Section of this report. The first step to estimating the space heating loads for each building is to calculate the heat loss through the building shell. Buildings were grouped together based upon building construction. The building space heating load was then estimated on Btuh/sf basis for each construction type. For example, buildings with wood frame construction are estimated to typically have a design space heating load of approximately 65 Btuh/sf of building floor area. **5**-1 Table 5.2.1 shows the heat loss values used for each building type. The calculations used to derive these heat loss figures can be referenced in Attachment 8.4 of this report. Estimated Heat Loss by Building Type Table 5.2.1 | Code | Building Type | Unit Heat Loss | |------|-------------------------------|----------------| | PE | Pre-Engineered Building | 35 Btuh/sf | | UM | Uninsulated Masonry Building | 60 Btuh/sf | | IM | Insulated Masonry Building | 55 Btuh/sf | | WF | Wood Frame Construction | 65 Btuh/sf | | PB | Plywood/Particle Board Const. | 115 Btuh/sf | | NM | New Masonry Building | 30 Btuh/sf | | GH | Greenhouse | 165 Btuh/sf | In addition to heat loss through the skin of the building, space heating due to building ventilation must be estimated. The buildings at Fort Detrick can be generally classified into laboratory, office and warehouse use. Each of these use classifications requires a different quantity of ventilation air (outdoor air) that must be heated to maintain room temperature during the winter months. Published data indicates that laboratories typically have 1.15 cfm/sf of ventilation air. Offices typically have 0.25 cfm/sf and warehouses are not expected to have any mechanical ventilation. The heat required to warm this air to room temperature is calculated as follows: 1.08 $$\frac{Btuh}{cfm^{\circ}F} \times \frac{Btu}{sf} \times 60^{\circ}F = QVENT$$ The resulting heat loss for ventilation for different building uses is shown in Table 5.2.2 ## Estimated Ventilation Heat Loss by Building Use Table 5.2.2 | Code | Building Use | Ventilation Heat Loss | |------|---------------------|-----------------------| | L | Laboratory | + 75 Btuh/sf | | О | Office | + 15 Btuh/sf | | W | Warehouse | + 0 Btuh/sf | The heat loss through the building shell and ventilation heat loss is combined to estimate the total space heating load for each building. Table 5.2.3 on the following pages lists the building number, name, and use for each building at Fort Detrick that is served by steam. The building type classification and building use classification, as described above, is shown in the table. The calculated space heating load in Btuh/sf is shown for each building. The estimated peak heating load in Btuh is calculated by multiplying Btuh/sf by the building size. For example, Building S-10 is an uninsulated masonry building that is used as an office. The heat loss for this building is therefore 60 Btuh/sf + 15 Btuh/sf = 75 Btuh/sf. Peak heating load = $75 \text{ Btuh/sf} \times 4,600 \text{ sf} = 345,000$ Btuh, or 350 lb/hr. Page 1 of 3 FORT DETRICK FREDERICK, MARYLAND Table 5.2.3 HEATING LOAD FOR BUILDINGS USING STEAM | S-10
S-12
S-100
S-100
S-101
S-122 | | | | | | | | | **** | | |--|--|-----------------------|----------|---|--------|-----|-----------|-------|-----------|------------------------------| | - 0 0 - 0 c | Signal Service | Office | ∑ | 0 | 4,600 | 75 | 345,000 | 320 | 437,000 | | | 0.0 = 0. | Thrift Shop | Store | MO | 0 | 3,000 | 75 | 225,000 | 230 | 285,000 | | | 0 5 2 6 | Signal Service | Empty? | Σ | 0 | 1,000 | 75 | 75,000 | 80 | 95,000 | | | 586 | Outside Electric Shop | Warehouse/Shop/Office | PE | Μ | 2,000 | 35 | 175,000 | 180 | 222,000 | | | 81 6 | Sewage Pump | | 밆 | 3 | 800 | 32 | 28,000 | 30 | 35,000 | | | | Rodent/Pest Control | Storage | 핌 | 3 | 1,100 | 35 | 38,500 | 40 | 49,000 | | | - | BOILER PLANT | | Σ | 0 | 11,200 | 75 | 840,000 | 840 | 1,064,000 | | | S-199 | FE Mnt. Shop | Wharehouse/Shop | 핊 | 8 | 12,100 | 32 | 423,500 | 420 | 236,000 | | | 200 | | Equipment Shed | PE | 3 | 1,200 | 32 | 42,000 | 40 | 53,000 | | | S-201 | Engineering Offices | Offices | 핊 | 0 | 25,300 | 20 | 1,265,000 | 1,270 | 1,602,000 | | | T-239 | Cancer Research Center | Warehouse | S | 3 | 10,000 | 09 | 000'009 | 009 | 760,000 | | | S-243 | Fe Sths | Warehouse/Shop | M
O | 8 | 009'9 | 09 | 396,000 | 400 | 501,000 | | | - | Cancer Research Center | Office | ĕ | 0 | 5,100 | 75 | 382,500 | 380 | 484,000 | | | · | Cancer Research Center | Warehouse | 8 | 3 | 4,800 | 115 | 552,000 | 220 | 000'669 | | | T-240 | Cancer Research Center | Warehouse | 8 | 3 | 4,800 | 115 | 552,000 | 220 | 000'669 | | | S-261 | Radiology | Labratory | S | _ | 2,500 | 135 | 337,500 | 340 | 427,000 | | | S-262 | Gen. Storehouse | Warehouse | 핌 | 8 | 5,000 | 35 | 175,000 | 180 | 222,000 | | | S-263 | Fe Mnt Shop | Mech Shops/Storehouse | Σ | ≥ | 13,900 | 09 | 834,000 | 830 | 1,056,000 | | | S-312 CF | CRC - Fermentation Production Facility | ıţì | W
S | 3 | 400 | 09 | 24,000 | 20 | 30,000 | Fenced in with 313 | | S-313 CF | CRC - Fermentation Production Facility | ıţ | S | | 2,300 | 135 | 310,500 | 310 | 393,000 | | | 314 | Cancer Research Center | Warehouse/Shop | PE | × | 3,800 | 35 | 133,000 | 130 | 168,000 | | | S-318 | | Warehouse | W | * | 3,300 | 09 | 198,000 | 200 | 251,000 | | | S-319 | | Warehouse | Ν | 3 | 3,300 | 00 | 198,000 | 200 | 251,000 | | | S-321 | Cancer Research Center | Office | ΩM | 0 | 4,000 | 75 | 300,000 | 300 | | Currently under construction | | S-322 | Cancer Research Center | Office | S | 0 | 4,000 | 75 | 300,000 | 300 | 380,000 | | | S-323 | Cancer Research Center | Warehouse | ЭE | × | 3,300 | 35 | 115,500 | 120 | 146,000 | | | S-324 N(| NCI-FCRF Central Supply & Trans | Warehouse | PE | W | 7,500 | 32 | 262,500 | 260 | 332,000 | | | S-325 | Cancer Research Center | Labratory | ≥ | _ | 12,800 | 130 | 1,664,000 | 1,660 | 2,107,000 | | | 326 | USDA | Storage | S | 3 | 200 | 9 | 12,000 | 9 | 15,000 | | | S-347 | Cancer Research Center | Chemical Storage | Σ | 3 | 2,000 | 90 | 120,000 | 120 | 152,000 | | | 349 | Cancer Research Center | Office | WF | 0 | 3,000 | 80 | 240,000 | 240 | 304,000 | | | 8-350 | Cancer Research Center | Office/Maintenance | ΟM | 0 | 9,300 | 75 | 697,500 | 200 | 883,000 | | | S-361 | Cancer Research Center | Maintenance Shop | MΩ | M | 11,400 | 09 | 684,000 | 089 | 866,000 | | | T-362 | Cancer Research Center | Office | WF | 0 | 9,400 | 80 | 752,000 | 750 | 952,000 | | | 374 | USDA | Lab | Σ | - | 18,400 | 135 | 2,484,000 | 2,480 | 3,146,000 | | | 375 | Steam Sterilization Plant | Shop | Σ | 0 | 21,200 | 75 | 1,590,000 | 1,590 | 2,014,000 | | | 376 | Cancer Research
Center | Labratory | Z | | 31,300 | 105 | 3,286,500 | 3,290 | 4,162,000 | | | 393 | Incinerator | Incinerator | MΩ | | 7,600 | 135 | 1,026,000 | 1,030 | 1,299,000 | | | S-426 (| CRC-Safety Protective Services | Offices/Med | ₹ | 0 | 008'9 | 20 | 476,000 | 480 | 603,000 | | | 427 | Cancer Research Center | Office | ≥ | 0 | 6,000 | 20 | 420,000 | 420 | 532,000 | | | 428 | Cancer Research Center | Office | Σ | 0 | 7,400 | 20 | 518,000 | 520 | 656,000 | | # FORT DETRICK FREDERICK, MARYLAND Table 5.2.3 HEATING LOAD FOR BUILDINGS USING STEAM | 429 | Cancer Research Center | Lab | WF L | ب | 6,400 140 896,000 | 140 | 000'968 | 006 | 1,135,000 | | |-------|-----------------------------------|--------------------|--------|---|-------------------|-----|------------|--------|------------|--| | 430 | Cancer Research Center | Office | N
N | 0 | 000'9 | 45 | 270,000 | . 270 | 342,000 | | | 431 | Cancer Research Center | Lab | Μ | 1 | 12,000 | 135 | 1,620,000 | 1,620 | 2,052,000 | The state of s | | S-432 | Cancer Research Center | Lab | ¥
N | ب | 21,500 | 105 | 2,257,500 | 2,260 | 2,859,000 | A CAMPA - I POLICIA - CAMPA | | S-433 | Cancer Research Center | Lab | WF | د | 5,800 | 140 | 812,000 | 810 | 1,028,000 | Replaced with a new lab | | S-434 | CRC - Fermentation | Offices/Lab | WF | 0 | 13,800 | 8 | 1,104,000 | 1,100 | 1,398,000 | | | S-459 | Cancer Research Center | Warehouse/Shop | Ψ'n | 0 | 10,200 | 75 | 765,000 | 0// | 000'696 | Undergoing major renov. | | 469 | Cancer Research Center | Labratory | Σ | ب | 56,100 | 135 | 7,573,500 | 7,570 | 9,591,000 | , | | 472 | Cancer Research Center | Labratory | ₹ | | 6,500 | 135 | 877,500 | 880 | 1,111,000 | Contains numerous tanks. | | T-501 | Education/Library | Office | WF | 0 | 7,600 | 80 | 000'809 | 610 | 770,000 | | | S-504 | USAMRDC | Office | WF | 0 | 008'6 | 80 | 784,000 | 780 | 000'866 | | | S-505 | HQ USAMRDC | Office | WF | 0 | 3,900 | 80 | 312,000 | 310 | 395,000 | | | S-521 | Adm Gen Purp | Office | WF | 0 | 11,500 | 80 | 920,000 | 920 | 1,165,000 | | | S-522 | Cancer Research Center | Labratory | ¥ | _ | 13,000 | 140 | 1,820,000 | 1,820 | 2,305,000 | | | S-524 | USAMBROL Admin | Office | M
S | _ | 5,300 | 135 | 715,500 | 720 | 000'906 | | | S-525 | Adm Gen Purp | Office | WF | 0 | 6,500 | 80 | 520,000 | 520 | 000'659 | | | 538 | Cancer Research Center | Labratory | MΩ | _ | 64,200 | 135 | 8,667,000 | 8,670 | 10,976,000 | | | 539 | CRC-Leroy D. Fothergill Lab | Lab | ≊ | _ | 110,400 | 130 | 14,352,000 | 14,350 | 18,175,000 | | | 549 | Cancer Research Center | Library | ₹ | 0 | 15,000 | 2 | 1,050,000 | 1,050 | 1,330,000 | | | 550 | Cancer Research Center | Labratory | Σ | _ | 20,000 | 135 | 2,700,000 | 2,700 | 3,419,000 | | | 560 | Cancer Research Center | Labratory | Σ | ب | 170,000 | 105 | 17,850,000 | 17,850 | 22,605,000 | | | 562 | Cancer Research Center | Labratory | Σ | _ | 15,000 | 105 | 1,575,000 | 1,580 | 1,995,000 | | | 567 | Cancer Research Center | Lab | M | 7 | 33,000 | 105 | 3,465,000 | 3,470 | 4,388,000 | A. C. | | 568 | Biomedical R&D lab | Lab | NN | | 49,300 | 105 | 5,176,500 | 5,180 | 6,556,000 | | | 571 | CRC-ANIMAL BUILDINGS | Labratory | Σ | | 35,700 | 105 | 3,748,500 | 3,750 | 4,747,000 | | | 9/9 | CRC-Biological Response Modifiers | Office | ¥ | 0 | 2,200 | 45 | 000'66 | 100 | 125,000 | | | T-611 | William Strough Auditorium | Auditorium w/stage | 5 | | 5,200 | 135 | 702,000 | 200 | 889,000 | | | S-660 | Visiting Officers Quarters | Residence | Σ | 0 | 12,200 | 75 | 915,000 | 920 | 1,159,000 | | | T-701 | | Office | WF | 0 | 2,000 | 80 | 160,000 | 160 | 203,000 | | | T-703 | Fire Station | | WF | 0 | 2,300 | 80 | 184,000 | 180 | 233,000 | | | T-713 | Post Exchange | Post Exchange | WF | 0 | 009'6 | 80 | 768,000 | 0// | 973,000 | | | T-715 | Judge Advocate/Legal Assist DVQ R | Office | WF | 0 | 2,400 | 80 | 192,000 | 190 | 243,000 | | | T-718 | Community Club | Community Club | Σ | 0 | 10,500 | 75 | 787,500 | 790 | 000'266 | | | T-722 | Adm. Gen Purp. | Office | WF | 0 | 009'6 | 80 | 768,000 | 770 | 973,000 | | | T-817 | ASAMRAA | Office | WF | 0 | 10,400 | 80 | 832,000 | 830 | 1,054,000 | | | 810 | Administration | Office | MN | o | 34,200 | 45 | 1,539,000 | 1,540 | 1,949,000 | | | T-818 | Administration | | WF | 0 | 2,000 | 80 | 160,000 | 160 | 203,000 | Connected to 817 | | T-819 | ASAMRAA | Office | WF | 0 | 1,400 | 80 | 112,000 | 110 | 142,000 | | | T-820 | ASAMRAA | Office | WF | 0 | 7,200 | 80 | 576,000 | 280 | 729,000 | Connnected to 817 | | T-823 | Medical Logistics | Office | WF | 0 | 2,100 | 80 | 168,000 | 170 | 213,000 | | | | | | | | | | | | | | # FORT DETRICK FREDERICK, MARYLAND Table 5.2.3 HEATING LOAD FOR BUILDINGS USING STEAM | I raining Center Navy Office Navy Office Navy Office Field House Field House Field House Field House Field House Motor Pool Motor Pool Office Motor Pool Office Motor Pool Office PM Adm Office | Office Office Office Office Office Office Gym Gym Gym Office | 2 G | | 130 | 000'6/8 | 200 | 000,000, | | |--|--|---------------|-----------|-----|------------|--------|------------|------------------| | | ffice ffice suse/Gym sym ehouse | | _ | - | | - | | | | | ffice
trice
suse/Gym
sym
shouse | | 00/100 | 130 | 871,000 | 870 | 1,103,000 | | | | Ifice Suse/Gym sym shouse ehouse | PB
O | 200 | 130 | 000'59 | 70 | 82,000 | Connected to 833 | | | ouse/Gym
iym
ehouse | PB 0 | 1,600 | 130 | 208,000 | 210 | 263,000 | | | | iym
shouse
ffice | PB L | 13,400 | 190 | 2,546,000 | 2,550 | 3,224,000 | | | | shouse | PE | 2,000 | 110 | 220,000 | 920 | 000'269 | | | | ffice | PB W | , | 115 | 1,150,000 | 1,150 | 1,456,000 | | | | | WF | | 80 | 368,000 | 370 | 466,000 | | | | Office | WF | 2,000 | 80 | 160,000 | 160 | 203,000 | | | | Office | WF | 2,000 | 80 | 160,000 | 160 | 203,000 | | | | Office | WF | 3,700 | 80 | 296,000 | 300 | 375,000 | | | ıter | Bowling/Office | PB 0 | 5,000 | 130 | 000'059 | 650 | 823,000 | | | dot | Shop | PB W | | 115 | 391,000 | 390 | 495,000 | | | Trainit | /Education | WF | 2,100 | 08 | 168,000 | 170 | 213,000 | | | | Youth Center | NN NN | | 45 | 234,000 | 230 | 296,000 | | | Cancer Research Center Admin/Food Stor | ood Storage | O
Wn | 7,500 | 75 | 562,500 | 260 | 712,000 | | | CRC-ANIMAL BUILDINGS Animal Storag | Storage | IM
IM | 36,000 | 130 | 4,680,000 | 4,680 | 5,927,000 | | | | Maintenance | M
M | 3,000 | 09 | 180,000 | 180 | 228,000 | | | | Warehouse/Offices | PE | ۷ 40,000 | 35 | 1,400,000 | 1,400 | 1,773,000 | | | Medical Advance Tech Mgmnt Office/Warehou | Varehouse | 0 | 000,78 | 02 | 2,590,000 | 2,590 | 3,280,000 | | | | Labs/Offices | M | 39,900 | 130 | 5,187,000 | 5,190 | 6,569,000 | | | | Labs/Offices | Σ | 8,800 | 130 | 1,144,000 | 1,140 | 1,449,000 | Attached to 1301 | | USDA Green | Greenhouse | M HB | V 3,700 | 165 | 610,500 | 610 | 773,000 | | | USDA Green | Greenhouse | MB W | V 3,700 | 165 | 610,500 | 610 | 773,000 | | | USDA Green | Greenhouse | MB W | V 3,700 | 165 | 610,500 | 610 | 773,000 | | | USDA Green | Greenhouse | MB ₩ | V 3,700 | 165 | 610,500 | 610 | 000'622 | | | USAMRIID ANNEX | Lab | NM | . 70,000 | 105 | 7,350,000 | 7,350 | 9,308,000 | | | USAMRIID ANNEX Warel | Warehouse | ≫
MO | V 2,000 | 09 | 120,000 | 120 | 152,000 | | | DATA PROCESSING Off | Offlice | O
WN | 11,200 | 45 | 504,000 | 200 | 638,000 | | | USAMRIID ANNEX | Lab | NM | . 224,100 | 105 | 23,530,500 | 23,530 | 29,799,000 | | | S | Residence | o
<u>₩</u> | 38,200 | 0/ | 2,674,000 | 2,670 | 3,386,000 | | | | Commisary | O
Wn | 40,100 | 75 | 3,007,500 | 3,010 | 3,809,000 | | 5-6 Entech Engineering, Inc. 26-Apr-95 G:\PROJECTS\4130.03\SS\BLDGSTM2.WK1 ^{1.} Heating Degree Days based on
data collected at the Fort Detrick Boiler Plant. After the peak heating load is estimated, the annual steam consumption can be calculated using the American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) heating degree day formula. The heating degree day (HDD) formula is as follows: Annual Energy = $$\left(\frac{Peak \ heat \ loss \ x \ HDD \ x \ 24 \ \frac{Hrs}{day}}{temp \ diff. \ x \ Btu/unit \ fuel}\right) \ x \ C_D$$ Again using building S-10 as an example, the annual expected steam use by this building is 437,000 lb/yr. Annual Energy = $$\left(\frac{345,000 \ Btuh \ x \ 5,532 \ HDD \ x \ 24 \ \frac{hrs}{day}}{65 \ °F \ x \ 1,000 \ Btu/lb}\right) \ x \ 0.62 \ = \ 437,000 \ \frac{lb}{yr}$$ Fort Detrick measured 5,532 heating degree days during the winter of 1994 at the boiler plant. This degree day information has a very good correlation with the steam production profile. The measured data was therefore considered preferable to published degree day information. C_D is an empirical correction factor described in the ASHRAE Fundamentals Handbook. As described in the Methodology Section, steam is assumed to have an energy value of 1,003 btu/lb, and temperature difference is the difference in indoor and outdoor temperatures on a "design" day. The space heating model, Table 5.2.3, shows that the total steam usage for space heating at Fort Detrick has been calculated to be 223 million pounds per year. Table 5.2.4 summarizes the heat loss model results by type of building. ## **Space Heating Model Results Table 5.2.4** | Building Type | Building
Square Feet | % of Building Square Feet | Total Annual
Steam (lb/yr) | Space Heating
Steam % Total | |------------------------|-------------------------|---------------------------|-------------------------------|--------------------------------| | Pre-Engineered | 110,100 | 6.2% | 5,835,000 | 2.6% | | Uninsulated Masonry | 400,400 | 22.7% | 52,207,000 | 23.4% | | Insulated Masonry | 318,300 | 18.1% | 44,014,000 | 19.8% | | Wood Frame | 156,200 | 8.8% | 17,743,000 | 8.0% | | Particle Board/Plywood | 57,700 | 3.3% | 10,079,000 | 4.5% | | New Masonry | 708,700 | 40.1% | 89,769,000 | 40.3% | | Greenhouse | 14,800 | 0.8% | 3,092,000 | 1.4% | | Total | 1,766,200 | 100% | 222,739,000 | 100% | Most of the heating load occurs in the masonry buildings. These buildings comprise 80.8% of the square footage of the buildings heated by steam. The masonry buildings typically house the laboratories, which have high ventilation loads as well. Figure 5.2.5 on the following page graphically displays the space heating model results. # Space Heating Model Results Building Type Figure 5.2.5 ## 5.3 Reheats During the winter, outside air brought into a building for ventilation must be heated before being introduced to the occupied space. Steam used to heat the outside air in the winter is included in the space heating model. In the summer time, warm humid air is brought into the building for ventilation. This air must be cooled to 50-55°F to remove the excess moisture in the air. The air is then reheated to space temperature before being introduced to the space. Steam is assumed to be used for reheats during April, through September, and for half of October and November. All animal buildings and animal labs, and laboratories with more than 10,000 square feet are assumed to have reheats. Table 5.3.1, the Reheat Model, indicates which buildings use steam for reheating air. The amount of steam required for reheats is based on the amount of ventilation air. The formulas shown below describe calculation of peak and annual steam use for reheats. Calculation results are tabulated in Table 5.3.1. $$Peak = \left(\frac{sf \times 1.15 \frac{cfm}{sf} \times 1.08 \frac{Btuh}{cfm^{\circ}F} \times 20^{\circ}F}{1,000 \frac{Btu}{lb}}\right)$$ Annual = $$\left(\frac{sf \times 1.15 \frac{cfm}{sf} \times 1.08 \frac{Btuh}{cfm^{\circ}F} \times 20^{\circ}F}{1,000 \frac{Btu}{lb}}\right) \times 24 \frac{hrs}{day} \times 30 \frac{day}{mo} \times 7 \text{ full months}$$ The total steam use for reheats is estimated to be 131 million pounds per year. # FORT DETRICK FREDERICK, MARYLAND Table 5.3.1 ESTIMATE OF TOTAL STEAM USE FOR REHEATS | Bidg No. | Building Name | Building Use | Building Type | Building SF | Reheat | Peak Lib/Hi | Annual Lb/Yr | |----------------|------------------------------------|--|---------------|-------------|--------|-------------|--------------| | S-10 | Signal Service | Office | 0 | 4,600 | No | 0 | 0 | | S-11 | Thrift Shop | Store | 0 | 3,000 | No | 0 | 0 | | S-12 | Signal Service | Empty? | 0 | 1,000 | No | 0 | 0 | | S-100 | Outside Electric Shop | Warehouse/Shop/Office | W | 5,000 | No | 0 | 0 | | S-101 | Sewage Pump | ······································ | W | 800 | No | 0 | 0 | | S-122 | Rodent/Pest Control | Storage | W | 1,100 | No | 0 | 0 | | 190 | BOILER PLANT | | 0 | 11,200 | No | 0 | 0 | | S-199 | FE Mnt. Shop | Wharehouse/Shop | W | 12,100 | No | 0 | 0 | | 200 | TE MIN. OHOP | Equipment Shed | W | 1,200 | No | 0 | 0 | | S-201 | Engineering Offices | Offices | 0 | 25,300 | No | 0 | 0 | | T-239 | Cancer Research Center | Warehouse | W | 10,000 | No | 0 | 0 | | S-243 | Fe Sths | Warehouse/Shop | W | 6,600 | No | 0 | 0 | | S-244 | Cancer Research Center | Office | 0 | 5,100 | No | 0 | 0 | | T-248 | Cancer Research Center | Warehouse | w | 4,800 | No | 0 | 0 | | T-249 | Cancer Research Center | Warehouse | w | 4,800 | No | 0 | 0 | | S-261 | Radiology | Labratory | | 2,500 | No | 0 | 0 | | S-262 | Gen. Storehouse | Warehouse | <u>_</u> | 5,000 | No | 0 | 0 | | S-262
S-263 | Fe Mnt Shop | Mech Shops/Storehouse | W | 13,900 | No | 0 | 0 | | | CRC - Fermentation Production Faci | | W | 400 | No | 0 | | | S-312 | | | L | 2,300 | No | 0 | 0 | | S-313 | CRC - Fermentation Production Faci | Warehouse/Shop | W | 3,800 | No | 0 | 0 | | 314 | Cancer Research Center | | | | No | 0 | 0 | | S-318 | | Warehouse | W | 3,300 | No No | 0 | 0 | | S-319 | | Warehouse | w | 3,300 | | 0 | 0 | | S-321 | Cancer Research Center | Office | <u> </u> | 4,000 | No | | 0 | | S-322 | Cancer Research Center | Office | <u> </u> | 4,000 | No No | 0 | 0 | | S-323 | Cancer Research Center | Warehouse | . W | 3,300 | No | 0 | | | S-324 | NCI-FCRF Central Supply & Trans | Warehouse | W | 7,500 | No | 0 | 0 | | S-325 | Cancer Research Center | Labratory | L | 12,800 | Yes | 320 | 1,602,000 | | 326 | USDA | Storage | W | 200 | No | 0 | 0 | | S-347 | Cancer Research Center | Chemical Storage | W | 2,000 | No | 0 | 0 | | 349 | Cancer Research Center | Office | 0 | 3,000 | No | 0 | 0 | | S-350 | Cancer Research Center | Office/Maintenance | 0 | 9,300 | No | 0 | 0 | | S-361 | Cancer Research Center | Maintenance Shop | W | 11,400 | No | 0 | 0 | | T-362 | Cancer Research Center | Office | 0 | 9,400 | No | 0 | 0 | | 374 | USDA | Lab | L | 18,400 | Yes | 460 | 2,304,000 | | 375 | Steam Sterilization Plant | Shop | 0 | 21,200 | No | 0 | 0 | | 376 | Cancer Research Center | Labratory | L | 31,300 | Yes | 780 | 3,919,000 | | 393 | Incinerator | Incinerator | L | 7,600 | No | 0 | 0 | | S-426 | CRC-Safety Protective Services | Offices/Med | 0 | 6,800 | - No | 0 | 0 | | 427 | Cancer Research Center | Office | 0 | 6,000 | No | 0 | 0 | | 428 | Cancer Research Center | Office | 0 | 7,400 | No | 0 | 0 | | 429 | Cancer Research Center | Lab | L | 6,400 | Yes | 160 | 801,000 | | 430 | Cancer Research Center | Office | 0 | 6,000 | No | 0 | 0 | | 431 | Cancer Research Center | Lab | L | 12,000 | Yes | 300 | 1,502,000 | | S-432 | Cancer Research Center | Lab | L | 21,500 | Yes | 530 | 2,692,000 | | S-433 | Cancer Research Center | Lab | L | 5,800 | No | 0 | C | | S-434 | CRC - Fermentation | Offices/Lab | 0 | 13,800 | No | 0 | C | | S-459 | Cancer Research Center | Warehouse/Shop | 0 | 10,200 | No | 0 | C | | 469 | Cancer Research Center | Labratory | L | 56,100 | Yes | 1,390 | 7,023,000 | | 472 | Cancer Research Center | Labratory | L | 6,500 | No | 0 | | | T-501 | Education/Library | Office | 0 | 7,600 | No | 0 | C | | S-504 | USAMRDC | Office | 0 | 9,800 | No | 0 | | | S-505 | HQ USAMRDC | Office | 0 | 3,900 | No | 0 | C | | S-521 | Adm Gen Purp | Office | 0 | 11,500 | No | 0 | C | | S-522 | Cancer Research Center | Labratory | L | 13,000 | Yes | 320 | 1,628,000 | | S-524 | USAMBRDL Admin | Office | L | 5,300 | No | 0 | (| | | Adm Gen Purp | Office | 0 | 6,500 | No | 0 | (| | S-525 | | | | | | | | ## FORT DETRICK FREDERICK, MARYLAND Table 5.3.1 ESTIMATE OF TOTAL STEAM USE FOR REHEATS | Bida No | Stillding Name | Building Use | Building Type | Building SF | Reheat | Paak Lb/Hi | Annual Lb/Yr | |-----------|-----------------------------------|--------------------|---------------------------------------|--|--------|--------------|--| | 539 | CRC-Leroy D. Fothergill Lab | Lab | | 110,400 | Yes | 2,740 | 13,821,000 | | 549 | Cancer Research Center | Library | 0 | 15,000 | No | 2,740 | 10,021,000 | | 550 | Cancer Research Center | Labratory | L | 20,000 | Yes | 500 | 2,504,000 | | | Cancer Research Center | · | L | | Yes | | | | 560 | | Labratory | | 170,000 | | 4,220 | 21,283,000 | | 562 | Cancer Research Center | Labratory | L | 15,000 | Yes | 370 | 1,878,000 | | 567 | Cancer Research Center | <u>Lab</u> | L | 33,000 | Yes | 820 | 4,131,000 | | 568 | Biomedical R&D lab | Lab | L | 49,300 | Yes | 1,220 | 6,172,000 | | 571 | CRC-ANIMAL BUILDINGS | Labratory | L | 35,700 | Yes | 890 | 4,469,000 | | 576 | CRC-Biological Response Modifiers | Office | 0 | 2,200 | No | 0 | 0 | | T-611 | William Strough Auditorium | Auditorium w/stage | L | 5,200 | No | 0 | 0 | | S-660 | Visiting Officers Quarters | Residence | 0 | 12,200 | No | 0 | 0 | | T-701 | | Office | 0 | 2,000 | No | 0 | 0 | | T-703 | Fire Station | | 0 | 2,300 | No | 0 | 0 | | T-713 | Post Exchange | Post
Exchange | 0 | 9,600 | No | 0 | 0 | | T-715 | Judge Advocate/Legal Assist DVQ R | Office | 0 | 2,400 | No | 0 | 0 | | T-718 | Community Club | Community Club | 0 | 10,500 | No | 0 | 0 | | T-722 | Adm. Gen Purp. | Office | 0 | 9,600 | No | 0 | 0 | | | ASAMRAA | | 0 | | | | | | T-817 | | Office | | 10,400 | No No | 0 | 0 | | 810 | Administration | Office | 0 | 34,200 | No | 0 | 0 | | T-818 | Administration | | 0 | 2,000 | No | 0 | 0 | | T-819 | ASAMRAA | Office | 0 | 1,400 | No | 0 | 0 | | T-820 | ASAMRAA | Office | 0 | 7,200 | No | 0 | 0 | | T-823 | Medical Logistics | Office | 0 | 2,100 | No | 0 | 0 | | T-824 | Medical Logistics | Office | 0 | 2,100 | No | 0 | 0 | | T-830 | Training Center | Office | 0 | 7,500 | No | 0 | 0 | | T-833 | Navy | Office | 0 | 6,700 | No | 0 | 0 | | T-834 | Navy | Office | 0 | 500 | No | 0 | | | T-835 | , | Office | 0 | 1,600 | No | 0 | 0 | | T-838 | Field House | Field House/Gym | L | 13,400 | No | 0 | 0 | | S-839 | Fitness Center | Gym | L | 5,000 | No | 0 | 0 | | T-901 | Gen. Store House | | w | | No | 0 | | | | | Warehouse | 4 | 10,000 | | | 0 | | T-902 | Motor Pool | Office | 0 | 4,600 | No | 0 | | | T-903 | Motor Pool | Office | 0 | 2,000 | No | 0 | | | T-904 | Motor Pool | Office | 0 | 2,000 | No | 0 | | | T-914 | PM Adm | Office | 0 | 3,700 | No | 0 | | | 915 | Bowling Center | Bowling/Office | 0 | 5,000 | No | 0 | 0 | | T-921 | Car Wash/Auto Shop | Shop | W | 3,400 | No | 0 | 0 | | T-925 | Religious Education | Training/Education | 0 | 2,100 | No | 0 | 0 | | 949 | YOUTH CENTER | Youth Center | 0 | 5,200 | . No | 0 | 0 | | 1021 | Cancer Research Center | Admin/Food Storage | 0 | 7,500 | No | 0 | 0 | | 1022-1049 | CRC-ANIMAL BUILDINGS | Animal Storage | L | 36,000 | Yes | 890 | 4,507,000 | | 1040 | CRC-ANIMAL BUILDINGS | Maintenance | W | 3,000 | No | 0 | | | 1050 | Cancer Research Center | Warehouse/Offices | W | 40,000 | No | 0 | 0 | | 1054 | Medical Advance Tech Mgmnt | Office/Warehouse | 0 | 37,000 | No | 0 | | | 1301 | USDA | Labs/Offices | L | 39,900 | Yes | 990 | 4,995,000 | | | | | | | | | | | 1302 | USDA | Labs/Offices | L | 8,800 | Yes | 220 | 1,102,000 | | 1303 | USDA | Greenhouse | W | 3,700 | No | 0 | | | 1304 | USDA | Greenhouse | W | 3,700 | No | 0 | | | 1305 | USDA | Greenhouse | W | 3,700 | No | 0 | | | 1306 | USDA | Greenhouse | W | 3,700 | No | 0 | | | 1412 | USAMRIID ANNEX | Lab | L | 70,000 | Yes | 1,740 | 8,764,000 | | 1414 | USAMRIID ANNEX | Warehouse | W | 2,000 | No | 0 | 0 | | 1422 | DATA PROCESSING | Office | 0 | 11,200 | No | 0 | 0 | | 1425 | USAMRIID ANNEX | Lab | L | 224,100 | Yes | 5,570 | 28,056,000 | | 1430 | ENLISTED BARRACKS | Residence | 0 | 38,200 | No | 0 | 0 | | 1520 | Commisary | Commisary | 0 | 40,100 | No | 0 | 0 | | | | | · · · · · · · · · · · · · · · · · · · | 1,765,900 | | 26,020 | <u>. </u> | Entech Engineering, Inc. 26-Apr-95 G:\PROJECTS\4130.03\SS\BLDGSTM2.WK1 ## 5.4 Humidification In the winter time, cold outside air holds very little moisture. Moisture must be added to the air in buildings that require large amounts of outside air in the winter. At Fort Detrick this humidification is accomplished by injecting steam directly into the air. Steam use for humidification was assumed to occur in animal buildings, or buildings with animal labs, in Buildings 1412 and 1425 (USARMIID), and in Building 915 (the Bowling Center). Humidification was assumed to be necessary in part of December, all of January, February, and March, and in part of April. The amount of steam used for humidification is based on the square footage of the building and the amount of ventilation required. The areas requiring humidification are typically labs which are assumed to have a 1.15 cfm/sf ventilation rate. The peak amount of steam used for ventilation at any point in time is therefore: Peak = $$sf \times 1.15 \frac{cfm}{sf} \times 0.075 \frac{lb}{h^3} \times 60 \frac{Min}{hr} \times 0.008 \frac{lbmoisture}{lbsteam}$$ Humidification is added to the ventilation air on an as needed basis. For the purpose of estimating the amount of steam used, it was assumed that humidification is required about 50% of the time. Annual steam use for humidification is therefore: Annual = 0.50 x Peak x 24 $$\frac{hrs}{day}$$ x 30 $\frac{days}{mo}$ x 4 Full Months Table 5.4.1 on the following pages shows the Humidification Model. The model includes the name and number of each building connected to the steam system, building use and building type. The table lists the square footage of each building and whether or not the building has an animal lab. The last two columns show the calculated peak and annual steam use for humidification. The total steam use for humidification at Fort Detrick has been estimated to be 39 million pounds per year. ## FORT DETRICK FREDERICK, MARYLAND Table 5.4.1 ESTIMATE OF TOTAL STEAM USE FOR HUMIDIFICATION | Bidg, No. | Building Name | Building Use | Building Type | Balleling SE | Acima Lab | Peak Rotti | Annual Service | |----------------|------------------------------------|--|---------------|------------------|-----------|------------|----------------| | S-10 | Signal Service | Office | 0 | 4,600 | No | 0 | 0 | | S-11 | Thrift Shop | Store | 0 | 3,000 | No | 0 | 0 | | S-12 | Signal Service | Empty? | 0 | 1,000 | No | 0 | 0 | | S-100 | Outside Electric Shop | Warehouse/Shop/Office | w | 5,000 | No | 0 | 0 | | S-101 | Sewage Pump | ************************************** | W | 800 | No | 0 | 0 | | S-122 | Rodent/Pest Control | Storage | w | 1,100 | No | 0 | 0 | | 190 | BOILER PLANT | Otolage | ··· | 11,200 | No | 0 | 0 | | S-199 | FE Mnt. Shop | Wharehouse/Shop | <u>_</u> | 12,100 | No | 0 | 0 | | 200 | FE MILL, SHOP | Equipment Shed | W | 1,200 | No | 0 | 0 | | S-201 | Engineering Offices | Offices | O | | No | 0 | | | T-239 | Cancer Research Center | Warehouse | w | 25,300
10,000 | No | 0 | 0 | | S-243 | Fe Sths | Warehouse/Shop | w | | No | 0 | 0 | | S-243
S-244 | Cancer Research Center | Office | 0 | 6,600
5,100 | No | 0 | 0 | | T-248 | Cancer Research Center | | W | | | | 0 | | T-248 | | Warehouse | | 4,800 | No | 0 | 0 | | | Cancer Research Center | Warehouse | W | 4,800 | No | 0 | 0 | | S-261 | Radiology | Labratory | L
W | 2,500 | No | 0 | 0 | | S-262 | Gen. Storehouse | Warehouse | W | 5,000 | No | 0 | 0 | | S-263 | Fe Mnt Shop | Mech Shops/Storehouse | W | 13,900 | No | 0 | 0 | | S-312 | CRC - Fermentation Production Faci | - ' | W | 400 | No | 0 | 0 | | S-313 | CRC - Fermentation Production Faci | | L | 2,300 | No | 0 | 0 | | 314 | Cancer Research Center | Warehouse/Shop | W | 3,800 | No | 0 | 0 | | S-318 | | Warehouse | W | 3,300 | No | 0 | 0 | | S-319 | | Warehouse | W | 3,300 | No | 0 | 0 | | S-321 | Cancer Research Center | Office | 0 | 4,000 | No | 0 | 0 | | S-322 | Cancer Research Center | Office | 0 | 4,000 | No | 0 | 0 | | S-323 | Cancer Research Center | Warehouse | W | 3,300 | No | 0 | 0 | | S-324 | NCI-FCRF Central Supply & Trans | Warehouse | W | 7,500 | No | 0 | 0 | | S-325 | Cancer Research Center | Labratory | L | 12,800 | No | 0 | 0 | | 326 | USDA | Storage | W | 200 | No | 0 | 0 | | S-347 | Cancer Research Center | Chemical Storage | W | 2,000 | No | 0 | 0 | | 349 | Cancer Research Center | Office | 0 | 3,000 | No | 0 | 0 | | S-350 | Cancer Research Center | Office/Maintenance | 0 | 9,300 | No | 0 | 0 | | S-361 | Cancer Research Center | Maintenance Shop | W | 11,400 | No | 0 | 0 | | T-362 | Cancer Research Center | Office | 0 | 9,400 | No | 0 | 0 | | 374 | USDA | Lab | L | 18,400 | No | 0 | 0 | | 375 | Steam Sterilization Plant | Shop | 0 | 21,200 | No | 0 | 0 | | 376 | Cancer Research Center | Labratory | L | 31,300 | Yes | 1,300 | 1,872,000 | | 393 | Incinerator | Incinerator | L | 7,600 | No | 0 | 0 | | S-426 | CRC-Safety Protective Services | Offices/Med | 0 | 6,800 | - No | 0 | 0 | | 427 | Cancer Research Center | Office | 0 | 6,000 | No | 0 | 0 | | 428 | Cancer Research Center | Office | 0 | 7,400 | No | 0 | 0 | | 429 | Cancer Research Center | Lab | L | 6,400 | Yes | 260 | 374,000 | | 430 | Cancer Research Center | Office | 0 | 6,000 | No | 0 | 0 | | 431 | Cancer Research Center | Lab | L | 12,000 | No | 0 | 0 | | S-432 | Cancer Research Center | Lab | L | 21,500 | No | 0 | 0 | | S-433 | Cancer Research Center | Lab | L | 5,800 | No | 0 | 0 | | S-434 | CRC - Fermentation | Offices/Lab | 0 | 13,800 | No | 0 | 0 | | S-459 | Cancer Research Center | Warehouse/Shop | 0 | 10,200 | No | 0 | 0 | | 469 | Cancer Research Center | Labratory | L | 56,100 | No | 0 | 0 | | 472 | Cancer Research Center | Labratory | L | 6,500 | No | 0 | 0 | | T-501 | Education/Library | Office | 0 | 7,600 | No | 0 | 0 | | S-504 | USAMRDC | Office | 0 | 9,800 | No | . 0 | 0 | | S-505 | HQ USAMRDC | Office | 0 | 3,900 | No | 0 | | | S-521 | Adm Gen Purp | Office | 0 | 11,500 | No | 0 | | | S-522 | Cancer Research Center | Labratory | L | 13,000 | Yes | 540 | | | S-524 | USAMBRDL Admin | Office | L | 5,300 | No | 0 | | | S-525 | Adm Gen Purp | Office | 0 | 6,500 | | 0 | | | 538 | Cancer Research Center | Labratory | L | 64,200 | Yes | 2,660 | | ## FORT DETRICK FREDERICK, MARYLAND Table 5.4.1 ESTIMATE OF TOTAL STEAM USE FOR HUMIDIFICATION | Bldg No. | Sulding Name | Building Use | Building Type | Building SF | Animal Lab | Peak Lb/Hr | Annual Lb/Yr | |-----------|-----------------------------------|--------------------|---------------|-------------|--------------|--------------|--------------| | 539 | CRC-Leroy D. Fothergill Lab | Lab | L | 110,400 | Yes | 4,570 | 6,581,000 | | 549 | Cancer Research Center | Library | 0 | 15,000 | No | 0 | 0 | | 550 | Cancer Research Center | Labratory | L | 20,000 | Yes | 830 | 1,195,000 | | 560 | Cancer Research Center | Labratory | L | 170,000 | No | 0 | 1,100,000 | | 562 | Cancer Research Center | Labratory | L | 15,000
 No | 0 | <u>_</u> | | | | | L | 33,000 | Yes | 1,370 | 1 072 000 | | 567 | Cancer Research Center | Lab | <u> </u> | | | | 1,973,000 | | 568 | Biomedical R&D lab | Lab | L | 49,300 | No | 0 | 0 101 000 | | 571 | CRC-ANIMAL BUILDINGS | Labratory | L | 35,700 | Yes | 1,480 | 2,131,000 | | 576 | CRC-Biological Response Modifiers | Office | 0 | 2,200 | No | 0 | 0 | | T-611 | William Strough Auditorium | Auditorium w/stage | L | 5,200 | No | 0 | 0 | | S-660 | Visiting Officers Quarters | Residence | 0 | 12,200 | No | 0 | 0 | | T-701 | | Office | 0 | 2,000 | No | 0 | 0 | | T-703 | Fire Station | | 0 | 2,300 | No | 0 | 0 | | T-713 | Post Exchange | Post Exchange | 0 | 9,600 | No | 0 | 0 | | T-715 | Judge Advocate/Legal Assist DVQ F | Office | 0 | 2,400 | No | 0 | 0 | | T-718 | Community Club | Community Club | 0 | 10,500 | No | 0 | 0 | | T-722 | Adm. Gen Purp. | Office | 0 | 9,600 | No | 0 | 0 | | T-817 | ASAMRAA | Office | 0 | 10,400 | No | 0 | 0 | | 810 | Administration | Office | 0 | 34,200 | No | 0 | 0 | | T-818 | Administration | | 0 | 2,000 | No | 0 | 0 | | T-819 | ASAMRAA | Office | 0 | 1,400 | No | 0 | | | T-820 | ASAMRAA | Office | 0 | 7,200 | No | 0 | 0 | | | | Office | 0 | 2,100 | No | 0 | 0 | | T-823 | Medical Logistics | | | | | 0 | | | T-824 | Medical Logistics | Office | 0 | 2,100 | No | | 0 | | T-830 | Training Center | Office | 0 | 7,500 | No | 0 | 0 | | T-833 | Navy | Office | 0 | 6,700 | No | 0 | 0 | | T-834 | Navy | Office | 0 | 500 | No | 0 | 0 | | T-835 | | Office | 0 | 1,600 | No | 0 | 0 | | T-838 | Field House | Field Housa/Gym | L | 13,400 | No | 0 | | | S-839 | Fitness Center | Gym | L | 5,000 | No | 0 | C | | T-901 | Gen. Store House | Warehouse | W | 10,000 | No | 0 | C | | T-902 | Motor Pool | Office | 0 | 4,600 | No | 0 | C | | T-903 | Motor Pool | Office | 0 | 2,000 | No | 0 | C | | T-904 | Motor Pool | Office | 0 | 2,000 | No | 0 | C | | T-914 | PM Adm | Office | 0 | 3,700 | No | 0 | | | 915 | Bowling Center | Bowling/Office | 0 | 5,000 | No | 210 | 302,000 | | T-921 | Car Wash/Auto Shop | Shop | w | 3,400 | No | 0 | C | | T-925 | Religious Education | Training/Education | 0 | 2,100 | No | 0 | C | | 949 | YOUTH CENTER | Youth Center | 0 | 5,200 | · No | 0 | 0 | | 1021 | Cancer Research Center | Admin/Food Storage | ō | 7,500 | No | 0 | | | 1022-1049 | CRC-ANIMAL BUILDINGS | Animal Storage | L | 36,000 | Yes | 1,490 | 2,146,000 | | 1049 | CRC-ANIMAL BUILDINGS | Maintenance | w | 3,000 | | 1,490 | 2,140,000 | | | | | | | | 0 | | | 1050 | Cancer Research Center | Warehouse/Offices | <u> </u> | 40,000 | No | 0 | | | 1054 | Medical Advance Tech Mgmnt | Office/Warehouse | 0 | 37,000 | No | | | | 1301 | USDA | Labs/Offices | L | 39,900 | No | 0 | (| | 1302 | USDA | Labs/Offices | L | 8,800 | No | 0 | | | 1303 | USDA | Greenhouse | W | 3,700 | No | 0 | (| | 1304 | USDA | Greenhouse | W | 3,700 | No | 0 | | | 1305 | USDA | Greenhouse | W | 3,700 | | 0 | (| | 1306 | USDA | Greenhouse | W | 3,700 | No | 0 | (| | 1412 | USAMRIID ANNEX | Lab | L | 70,000 | No | 2,900 | 4,176,000 | | 1414 | USAMRIID ANNEX | Wareho use | W | 2,000 | No | 0 | | | 1422 | DATA PROCESSING | Office | 0 | 11,200 | No | 0 | (| | 1425 | USAMRIID ANNEX | Lab | L | 224,100 | No | 9,280 | 13,363,000 | | 1430 | ENLISTED BARRACKS | Residence | 0 | 38,200 | | 0 | (| | 1520 | Commisary | Commisary | 0 | 40,100 | | 0 | | | | | | | 1,765,900 | | 26,890 | 38,721,000 | Entech Engineering, Inc. ## 5.5 Domestic Hot Water The principle user of domestic hot water at Fort Detrick is the animal buildings and labs where employees must shower when they arrive to work and shower at the end of the day. A smaller amount of steam is used in office buildings for hand washing, coffee, etc. The following assumptions were used to estimate steam use for domestic hot water. | | <u>Office</u> | <u>Lab</u> | Animal Lab | |---|---------------|------------|------------| | No. People/Gross square foot | 1/350 | 1/500 | 1/500 | | Average Gallon Hot Water/
Person/Day | 1 | 5 | 50 | The expected peak and annual steam use for domestic hot water is then calculated as follows: $$Peak = \begin{pmatrix} (sf \ x \ \frac{people}{sf}) \ (Gal/\frac{Person}{Day}) & (0.4 \ Diversity) \ (8.3 \frac{lb}{gal}) \ (1 \ \frac{Btu}{lb^{\circ}F}) \ (60^{\circ}F) \\ \hline \\ 1,000 \ \frac{Btu}{lbsteam} \end{pmatrix}$$ Annual = $$\left(\frac{(sf \ x \ \frac{people}{sf}) \ (Gal/\frac{Person}{Day}) \ (365\frac{Day}{yr}) \ (8.3 \ \frac{lb}{gal}) \ (1 \ \frac{Btu}{lb^{\circ}F}) \ (60^{\circ}F)}{1,000\frac{Btu}{lbsteam}}\right)$$ For example, Building 321 is a 6,300 square foot office that uses steam for heating domestic hot water. The building is assumed to have 18 people (6,300 sf ÷350 sf/person) working in it. The steam required to provide hot water for these people is calculated as follows: $$Peak = \left(\frac{(18 \ people) \ (1\frac{GalPerson}{Day}) \ (0.4 \ Diversity) \ (8.3 \ \frac{lb}{gal}) \ (1 \ \frac{Btu}{lb^{\circ}F}) \ (60^{\circ}F)}{1,000 \ \frac{Btu}{lb}}\right) = 4 \ \frac{lb}{hr}$$ Annual = $$\left(\frac{(18 \ people) \ (1 \ \frac{galperson}{day}) \ (365Days) \ (8.3 \ \frac{lb}{gal}) \ (1 \ \frac{Btu}{lb^{\circ}F}) \ (60^{\circ}F)}{1,000 \ \frac{Btu}{lb}}\right) = 3,000 \ \frac{lb}{yr}$$ The steam use for domestic hot water is modeled in Table 5.5.1 shown on the following pages. Fort Detrick has converted many of the office buildings on the base to electric domestic hot water and abandoned the use of steam for heating water. These buildings will indicate "NO" in the column indicating if there is domestic hot water. # Page 1 of 3 FORT DETRICK FREDERICK, MARYLAND Table 5.5.1 ESTIMATE OF TOTAL STEAM USE FOR DOMESTIC HOT WATER | S-10 | Signal Service | Office | 0 | 4,600 | 13 | S _N | No | 0 | | |-------|--|--|---|--------|----|----------------|----------------|-----|---------| | S-11 | Thrift Shop | Store | 0 | 3,000 | 6 | N _O | No | 0 | 0 | | S-12 | Signal Service | Empty? | 0 | 1,000 | 3 | No | No | 0 | 0 | | S-100 | Outside Electric Shop | Warehouse/Shop/Office | M | 2,000 | 0 | No | No. | 0 | 0 | | S-101 | Sewage Pump | | Μ | 800 | 0 | No | No | 0 | 0 | | S-122 | Rodent/Pest Control | Storage | * | 1,100 | 0 | No | No | 0 | 0 | | 190 | BOILER PLANT | and the state of t | 0 | 11,200 | 32 | 8 | No | 0 | 0 | | S-199 | FE Mnt. Shop | Wharehouse/Shop | 3 | 12,100 | 0 | No | No | 0 | 0 | | 200 | | Equipment Shed | × | 1,200 | 0 | No | No | 0 | 0 | | S-201 | Engineering Offices | Offices | 0 | 25,300 | 72 | N _O | Νο | 0 | 0 | | T-239 | Cancer Research Center | Warehouse | W | 10,000 | 0 | N _o | °N | 0 | 0 | | S-243 | Fe Sths | Warehouse/Shop | W | 009'9 | 0 | S
S | No
No | 0 | 0 | | S-244 | Cancer Research Center | Office | 0 | 5,100 | 15 | S. | S | 0 | 0 | | T-248 | Cancer Research Center | Warehouse | 3 | 4,800 | 0 | No | No | 0 | | | T-249 | Cancer Research Center | Warehouse | W | 4,800 | 0 | No | No
No | 0 | 0 | | S-261 | Radiology | Labratory | 7 | 2,500 | 5 | S _O | 8 | 0 | 0 | | S-262 | Gen. Storehouse | Warehouse | W | 5,000 | 0 | S _O | S. | 0 | 0 | | S-263 | Fe Mnt Shop | Mech Shops/Storehouse | Μ | 13,900 | 0 | No | No
No | 0 | 0 | | S-312 | CRC - Fermentation Production Facility | ıtıy | Μ | 400 | 0 | N _o | No | 0 | 0 | | S-313 | CRC - Fermentation Production Facility | lity | ب | 2,300 | 2 | No | Yes | 2 | 4,000 | | 314 | Cancer Research Center | Warehouse/Shop | Μ | 3,800 | 0 | o
N | No | 0 | 0 | | S-318 | | Warehouse | W | 3,300 | 0 | _S | No | 0 | 0 | | S-319 | | Warehouse | W | 3,300 | 0 | No
No | No | 0 | 0 | | S-321 | Cancer Research Center | Office | 0 | 4,000 | = | ٤ | Yes | 2 | 2,000 | | S-322 | Cancer Research Center | Office | 0 | 4,000 | 11 | No | Yes | 2 | 2,00 | | S-323 | Cancer Research Center | Warehouse | × | 3,300 | 0 | No | No | 0 | 0 | | S-324
| NCI-FCRF Central Supply & Trans | Warehouse | Μ | 7,500 | 0 | No | No | 0 | 0 | | S-325 | Cancer Research Center | Labratory | Γ | 12,800 | 56 | No | Yes | 25 | 23,000 | | 326 | USDA | Storage | W | 200 | 0 | Š | S _N | 0 | 0 | | S-347 | Cancer Research Center | Chemical Storage | ۸ | 2,000 | 0 | No | No | 0 | | | 349 | Cancer Research Center | Office | 0 | 3,000 | 6 | No | Yes | 2 | 2,000 | | S-350 | Cancer Research Center | Office/Maintenance | 0 | 9,300 | 27 | Š | Yes | 45 | 108,000 | | S-361 | Cancer Research Center | Maintenance Shop | W | 11,400 | 0 | °N | Yes | 40 | 104,000 | | T-362 | Cancer Research Center | Office | 0 | 9,400 | 27 | õ | Yes | 2 | 5,000 | | 374 | USDA | Lab | Γ | 18,400 | 37 | No | Yes | 37 | 33,000 | | 375 | Steam Sterilization Plant | doys | 0 | 21,200 | 61 | No | No | 0 | | | 376 | Cancer Research Center | Labratory | 7 | 31,300 | 63 | Yes | Yes | 623 | 569,000 | | 393 | Incinerator | Incinerator | 7 | 2,600 | 15 | No | No | 0 | | | S-426 | CRC-Safety Protective Services | Offices/Med | 0 | 6,800 | 19 | No | Yes | 4 | 4,000 | | 427 | Cancer Research Center | Office | 0 | 000'9 | 11 | No | Yes | 3 | 3,000 | | 007 | Total Acceptance | C HIS | c | 1 400 | č | | , | • | , | Page 2 of 3 FORT DETRICK FREDERICK, MARYLAND Table 5.5.1 ESTIMATE OF TOTAL STEAM USE FOR DOMESTIC HOT WATER | Y 98 | 88 88 88 99 99 99 99 99 99 99 99 99 99 9 |---|--|--|---|--|---|---|--
--	--	--
---	---	--
--	---	--
--		> > > <i>-</i> <i>-</i> <i>-</i> <i>-</i> <i>-</i>
22 28 28 33 33 11 11 11 128 40 40 40 40 40 40 66 66 66 66 66 66 66 66 66 66 66 66 66	22 28 28 11 11 11 11 128 128 40 40 40 40 40 40 40 40 40 40 40 40 40	22 28 28 33 33 36 40 40 40 40 40 40 40 40 40 40 40 40 40
9,800 1,500 1,500 1,500 6,500 6,500 10,400 15,000 1	9,800 1,500 1,500 1,500 6,500 0,000 0 0,000 0,000 0,000 0,000 0	7,000 8,800 11,500 13,000 6,500 6,500 6,500 10,400 10,400 15,000 20,000 15,000 20,
9,800 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,000 1,	9,800 1,500 3,000 6,500 0,400 0,000 0,000 5,000 5,000 5,000 5,000 2,200 2,	1,900 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,000 1,
9,800 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,400 1,000 1,	7,800 11,500 11,500 13,900 13,900 13,900 6,500 64,200 10,400 15,000 20,000 20,000 15,000 15,000 2,20	
9,800 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,000 1,		9,800 3,900 11,500 13,000 5,300
9,800 1,500 3,000 3,000 6,500 0,400 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0 0	9,800 1,500 1,500 1,500 1,500 1,000	9,800 1,500 1,500 3,000 6,500 6,500 0,000 0,000 0,000 0,000 5,000 5,000 5,000 5,000 5,000 5,200 5,200 5,200 5,200
9,800 1,500 9,000 9,	8800 900 900 900 900 900 900 900	800 800 800 800 800 800 800 800
3,900 11,500 13,000 6,500 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 12,000 13,000 14,0	3,900 11,500 10,400 10,400 10,400 10,000 10,	3,900 (6,50) (6,50) (7,00) (7,00) (7,00) (7,00) (8,20) (8,20) (8,20) (8,20) (8,20)
1,500 1,	3,900 1,500 1,	
3,900 11,500 6,500 6,500 6,500 11,0,000 17,0	3, 900 11,500 11,500 11,500 12,300 10,400 15,000 15	2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200
3,000 1,	3,000 1,1500 3,000 1,200 1,000 1	5,500 5,
11,500 3,000 6,500 6,500 10,400 15,00	1,500 3,000 6,500 6,500 0,400 0,000 0,000 0,000 5,000 5,000 6,300 6,300 6,300 6,200 2,200	1,500 3,000 6,500 6,500 0,400 0,000 0,000 0,000 0,000 5,000 5,000 5,700 5,700 5,200 6,200
11 128 122 221 43 43 40 30 66 66 66 66 66 66 71 71	11 128 122 221 43 43 40 30 66 66 66 66 66 66 67 71 71 71 71 71 71 71 71 71 71 71 71 71	11 128 122 221 43 43 40 340 30 66 66 66 66 66 77 77 77
--	---------	-----------
0	0	0
Demand FB = Flashed Blowdown Recovered F = Feedwater Total P = Pre-heater Temperature Rise PSC = Pre-heater steam to condensate The remaining plant uses include No. 6 fuel oil storage and heating, steam used for atomizing fuel oil during firing, and the steam required for soot blowing (cleaning) the boilers. The percentages listed in the notes for Table 5.9.2 were taken from the Results for the Nationwide Oil-Versus-Gas Boiler test program that appeared in Energy Engineering, Vol. 91, No. 4, 1994. These percentages are applied against the steam fueled by oil value for estimating the additional used by the plant. The total plant usage is then calculated by adding up all the consumptions. The percentages of steam out of the boilers consumed by the plant is then calculated. The average monthly demand by the plant is 13.8%, or 7,900 mlb/month (10,800 lb/hr).		
to the individual buildings uses, and for the site uses by month. Table 5.11.1 reflects the building usage totals associated with Sections 5.2 through 5.8 only. The impact of each building is also shown as the "Steam Ratio", and relates to the portion of the building totals only. Most notably the Steam Sterilization Plant (Building 375), the Cancer Research Center (Building 560), and the Army's USAMARIID Annex (Building 1425) constitute the majority of building steam usage (36% to total). Table 5.11.2 summarizes the impact of each type of use, (Sections 5.2 through 5.10) by month for 1994. As stated previously in Section 5.10 the losses predicted here are the residual totals required to balance the usage load for the month. This information is shown graphically in Figure 5.11.3. When reviewing these results it becomes evident that the losses are not as consistent as they were estimated in Table 5.10.1. The effect of combining these values within the level of accuracy for this report explains some of these discrepancies. Additionally, effects of under or over heating spaces during the heating season also impacts this, especially the intermediate months tendency for over heating. ## FORT DETRICK FREDERICK, MARYLAND Table 5.11.1 ESTIMATE OF TOTAL STEAM USE IN POUNDS OF STEAM PER YEAR	9,0	
		375,000
and their efficiencies on natural gas and No. 6 fuel oil individually and combined. Boilers 1 and 2 as expected have the better efficiencies in the range of 79-83%, while the plant's workhorse, Boiler No. 3, has an average efficiency of 75%. Of the two older, Boilers No. 6 has a better efficiency than Boiler No. 5 by approximately 7 percentage points. Figure 5.12.5 is included to summarize the distribution of costs associated with each boiler. The table uses the log data for steam (mlbs), natural gas (mcf) and No. 6 fuel oil (gallons), and each are converted to energy (mmBtu). The method for identifying the efficiencies begins first with realizing that boilers of this nature are inherently more efficient on No. 6 fuel oil than on natural gas by 2 to 3 percentage points. The next step was to perform an iterative calculation to fine tune efficiencies that balanced the distribution of energy in a realistic manner. The method is to select an efficiency for fuel oil and let the natural gas efficiency calculate a value while balancing the energy. The efficiencies shown are both realistic and accurate in terms of tracking the energy totals. In most cases, minor adjustments to the oil efficiency renders the natural gas efficiency unrealistic, either higher or lower. ## 1994 Fuel to Steam Efficiencies Log Data - Boilers #1 thru #6 Figure 5.12.4		Boiler
2.5.5, has been developed for the boiler plant and can be viewed in Table 5.14.1 on the following page. The model represents the current operation of the building as indicated by boiler plant personnel and observed by Entech. The model is employed to approximate the contribution from all electrical users to an annual electric cost. The electric model will be used in conjunction with all other models during subsequent calculations to determine future energy costs and savings. Table 5.14.2 summarizes the results of the electric model. Electric Model Cost Summary Table 5.14.2	Boiler Fans	\$27,011
1978 1978		22.4
7.0 7.0 7.0 7.0 7.0		2.2
109	\$0\$	
notes the results of the life cycle costs (LCCID) summary. #### 6.2 ECO List The following descriptions summarize the various categories of ECOs being reviewed at Fort Detrick. # **ECO Categories:** - 1. (B) Boiler Systems/Controls ECOs that pertain to the direct operation of the boilers and their control in the Boiler Plant. - 2. (O) Operation These are ECOs that are performed to analyze alternate methods for selecting and utilizing boilers and fuels. - 3. (S) Site Possible ECOs associated with improvements that could be made at the Fort Detrick site that would have a direct impact on the Boiler Plant. - 4. (P) Plant ECOs associated with electrical and/or steam consumption within the Boiler Plant, excluding lighting. - 5. (L) Lighting ECOs addressing lighting in the Boiler Plant. Table 6.2.1 is the complete list of 30 ECOs considered for this study. All but one of the ECOs were evaluated for Energy Savings Opportunities. ECO S-5, Correct Sizing of Traps, was eliminated from further review based on an agreement between Fort Detrick and Entech. Backup information if provided for each ECO is included in Attachment 8.5. # Fort Detrick ECO List **Table 6.2.1**	Category	No.
(6 / 1G) = .85 (IF < 1 PROJECT DOES NOT QUALIFY) LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: FT. DETRICK REGION NOS. 3 CENSUS: 3 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 2.29 % # ECO B-3 AUTOMATIC BLOWDOWN CONTROLS Existing. According to the Fort Detrick water quality consultant, Betz Entec, the estimated blowdown for the boilers is 4% of the total feedwater. The method of maintaining the continuous blowdown of the boiler is to set the appropriate pinch valve for the boiler located near the blowdown flash tank. Tests are done daily to evaluate the alkalinity of the water in the boiler, and the pinch valve is adjusted accordingly. This practice, while not automatic by definition, is sound and lends to maintaining consistent blowdown rates, as verified by Betz Entec. The overal efficiency for the boilers is 76.8%. For simplification, the calculation will disregard heat gained in economizers. This assumption will slightly over estimate savings and payback. The energy cost to heat makeup water required to offset the blowdown is estimated to be \$37,700 per year. Feedwater Total = $$720,205 \text{ mlb/yr}$$ (from Table 5.9.1) Blowdown Total = $$28,800 \text{ mlb/yr}$$ $$\left(720,205 \frac{mlb}{yr} \times 0.04\right) = 28,808 \text{ use}, 28,800 \frac{mlb}{yr}$$ $$\left(28,800 \frac{mlb}{yr} \times 1,000 \frac{lb}{mlb} \times \left(321 \frac{btu}{lb} - 28 \frac{btu}{lb}\right) \div 1,000,000 \frac{Btu}{mmBtu}\right) = 8,438 \text{ use, } 8,440 \frac{mmBtu}{yr}$$ $$\left(8,440 \frac{mmBtu}{0.768} \times \frac{1 mcf}{1.03 mmBtu}\right) = 10,669 use, 10,670 \frac{mcf}{yr}$$ Blowdown Cost = \$37,700 $$\left(10,670 \frac{mcf}{yr} \times \frac{\$3.53}{mcf}\right) = \$37,665 \text{ use, } \$37,700$$ Proposed. Install automatic blowdown controls on all five boilers to reduce blowdown. It is Entech's position that the present method is fairly effective and that automatic blowdown would control the total to 3%. The estimated cost for heating blowdown would be \$27,900 per year. Feedwater Total = 713,000 mlb/yr $$\left(720,205 \ \frac{mlb}{yr} \ x \ .99\right) = 713,000 \ \frac{mlb}{yr}$$ NOTE: 99% Feedwater = 1% reduction in blowdown (4%-3%) Blowdown Total = 21,400 mlb/yr $$\left(713,000 \frac{mlb}{yr} \times 0.03\right) = 21,390 \text{ use, } 21,400 \frac{mlb}{yr}$$ Blowdown Energy = 6,270 mBtu/yr (from 60°F to 350°F) $$\left(21,400\frac{mlb}{yr} \times 1,000\frac{lb}{mlb} \times \left(321\frac{btu}{lb} - 28\frac{btu}{lb}\right) \div 1,000,000\frac{Btu}{mmBtu}\right) = 6,270 \frac{mmBtu}{yr}$$ Efficiency = 77.2% Steam Generated $$(691,397mmlb \times 1.003 \frac{mmBtu}{mlb})$$ $$\frac{ExistingFuel-FuelSaved}{\left(\frac{691,397 \ mlb \ x \ 1.003 \ \frac{mmBtu}{mlb}}{.768}\right) - \left(10,670 \ mmBtu - 6,270 \ mmBtu}\right)}$$ $$\left(6,270 \ \frac{mmBtu}{yr} \ x \ \frac{1 \ mcf}{1.03 \ mmBtu}\right) = 7,885 \ use, 7,890 \ \frac{mcf}{yr}$$ $$\left(7,890 \ \frac{mcf}{yr} \ x \ \frac{\$3.53}{mcf}\right) = \$27,852 \ use, \ \$27,900$$ # **Construction Cost.** The estimated construction cost for implementing this energy conservation opportunity on all five boilers is \$145,000.	Material	\$77,000
1993 UNIT COST SAVINGS ANNUAL $ DISCOUNTED FUEL $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) 3. NON ENERGY SAVINGS(+) / COST(-) NNUAL RECURRING (+/-) $ 0. (1) DISCOUNT FACTOR (TABLE A) 14.74 (2) DISCOUNTED SAVING/COST (3A X 3A1) $ 0. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) B. NON RECURRING SAVINGS (+) / COSTS (-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) d. TOTAL $ 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ 0. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 14970. 5. SIMPLE PAYBACK PERIOD (1G/4) 13.36 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) $ 306749. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = 1.53 (IF < 1 PROJECT DOES NOT QUALIFY) 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 5.33 % ``` LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 # ECO B-5 OXYGEN (O_2) TRIM CONTROLS ON BOILERS Existing. The five boilers at the Fort Detrick boiler plant presently do not have automatic oxygen controls for limiting excess air. Oxygen (O_2) analyzers for status only are installed on all five boilers, and of the five, only the analyzers for Boilers No. 1, No. 2, and No.3. are presently functional. Excessive combustion air must be heated; resulting in increased flue gas losses (costs). The excess air calculations are based on the boilers overall efficiencies determined in Table 5.12.4. The theoretical amount of air needed for the combustion of natural gas is 720 lbs air/mmBtu (million Btu). The theoretical amount required for No. 6 oil is 750 lbs of air/mmBtu. To simplify calculations, the natural gas value of 720 lbs/mmBtu will be used for determining the excess air quantities. The boilers fire on natural gas approximately 75% of the time. Based on the overall efficiency of 78.7%, and a flue gas temperature of 450°F, Boiler No. 1 is estimated to use 25% excess air, or 180 lbs/mmBtu. This calculation is shown below as an example, and Table ECO B-5.1.1 follows, summarizing the excess air values and costs for all five boilers. Boiler No. 1 Excess Air = 720 lbs/mmBtu x .25 = 180 lbs/mmBtu From the billing history using boiler plant log data, Boiler No. 1 used 170,724 mmBtu/yr in fuel energy in 1994. Energy Use = $$170,724 \text{ mmBtu/yr}$$ $$\left(165{,}372 \frac{mcf}{yr} \times \frac{1.03 \ mmBtu}{mcf}\right) + \left(2{,}627 \frac{gal}{yr} \times \frac{0.149690 \ mmBtu}{gal}\right) = 170{,}724 \frac{mmBtu}{yr}$$ Of this total, 16,632 Btu/mmBtu of fuel consumed is used to heat the excess air. The standard equation and the calculation for Boiler No. 1 is as follows. The specific heat of air is assumed to be 0.24 Btu/lbm °R. Ratio of $$\left(\frac{Btu\ (Excess\ Air\ Heat)}{mmBtu\ (Total\ Fuel\ In)}\right) = 16,632\ \frac{Btu}{mmBtu}$$ $$\left(180 \frac{lbs}{mmBtu} \times 0.24 \frac{Btu}{lbm^{\circ}R} \times (450 - 65^{\circ}F)\right) = 16,632 \frac{Btu}{mmBtu}$$ This value converts to a yearly total of 2,839 mmBtu/yr, or 2,757 mcf. The total cost to heat this air, assuming all natural gas, is \$9,731. The total cost for all five boilers is calculated to be over \$75,000 / yr. Energy Usage = 2,839 mmBtu/yr (for heating excess air) $$\left(\left(16,632\frac{Btu}{mmBtu} \times 170,724\frac{mmBtu}{yr}\right) \div 1 \times 10^6 \frac{Btu}{mmBtu}\right) = 2,839 \frac{mmBtu}{yr}$$ Fuel Consumed = 2,757 mcf/yr $$\left(2,839 \frac{mmBtu}{yr} \div 1.03 \frac{mmBtu}{mcf}\right) = 2,757 \frac{mcf}{yr}$$ Fuel Cost = \$9,731 /yr $$\left(2,757 \frac{mcf}{yr} \times \frac{\$3.53}{mcf} \right) = \$9,731 /yr$$ The summary of estimated excess air for the existing five boilers follows in Table ECO B-5.1.1. G:/PROJECTS/4130.03/SS/ECO - B5.WK1 Existing – Estimated Excess Air ECO B-5 (w/o O2 Trim Controls) Table ECO B-5.1.1	\$33,934 \$18,872 \$5,961 \$75,319	9,613 5,346 1,689
are made, the payback for Boiler No. 1 would be closer to 39 years. The payback period for Boiler No. 3 is 4.4 years, and the SIR is 4.8. It is Entech's recommendation to install O_2 trim controls on this boiler. As for Boilers No. 5 and No. 6, the numbers from this study would suggest that Boiler No. 5 have O_2 trim controls. The reality is that the stacks on both of these boilers are suspected to be very leaky. These conditions would make O_2 control very difficult to achieve. In addition, it's Entech's recommendation to operate these boilers less often in future. Entech does not recommend O_2 trim controls for Boiler No. 5 and No. 6. LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK2 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: FT. DETRICK REGION NOS. 3 CENSUS: 3 PROJECT NO. & TITLE: 4130.03 FT. DETRICK STEAM STUDY FISCAL YEAR 1995 DISCRETE PORTION NAME: B-5 OXYGEN TRIM CONTROLS (#3) ANALYSIS DATE: 09-20-95 ECONOMIC LIFE 20 YEARS PREPARED BY: ENTECH ENG. 1. INVESTMENT A. CONSTRUCTION COST \$ 67000. B. SIOH \$ 4000. C. DESIGN COST \$ 4000. D. TOTAL COST (1A+1B+1C) \$ 75000. 0. 0. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE \$ G. TOTAL INVESTMENT (1D - 1E - 1F) 75000. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) 3. NON ENERGY SAVINGS(+) / COST(-) \$ -1000. A. ANNUAL RECURRING (+/-) ANNOAL RECORKING (+/-) (1) DISCOUNT FACTOR (TABLE A) 14.74 \$ -14740. (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) ITEM \$ 0. d. TOTAL 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -14740. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 17001. 5. SIMPLE PAYBACK PERIOD (1G/4) 4.41 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 362553. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = (IF < 1 PROJECT DOES NOT QUALIFY) 11.55 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): LIFE CYCLE COST ANALYSIS SUMMARY LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK2 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 INSTALLATION & LOCATION: FT. DETRICK REGION NOS. 3 CENSUS: 3 PROJECT NO. & TITLE: 4130.03 FT. DETRICK STEAM STUDY FISCAL YEAR 1995 DISCRETE PORTION NAME: B-5 OXYGEN CONTROLS (#1) ANALYSIS DATE: 09-20-95 ECONOMIC LIFE 20 YEARS PREPARED BY: ENTECH ENG. 1. INVESTMENT	Α.	CONSTRUCTION COST
FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) d. TOTAL $ 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS (+) / COST (-) (3A2+3Bd4) $ -73700. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 37714. 5. SIMPLE PAYBACK PERIOD (1G/4) 8.67 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) $ 821581. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = 2.51 (IF < 1 PROJECT DOES NOT QUALIFY) 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 7.96 % ``` LIFE CYCLE COST ANALYSIS SUMMARY INSTALLATION & LOCATION: FT. DETRICK REGION NOS. 3 CENSUS: 3 LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 # ECO B-6 AIR PREHEATERS Existing. Boilers No. 1, No. 2, and No. 3 have economizers that recover heat from the existing flue gas to heat boiler feedwater. None of the boilers currently have air preheaters. Air preheaters heat combustion air by recovering heat from boiler flue gas. Preheating the combustion air reduces the energy required to elevate the air to combustion temperatures. This results in improved fuel-to-steam efficiency. The costs to operate the five boilers include fuel costs and electrical costs to operate the forced draft and induced draft fans. The cost to operate the boilers and fans in 1994 was \$3,036,000. Refer to Section 4.0 of the report for more detail about current energy consumption. Natural Gas = $$656,537 \text{ mcf/yr}$$ No. 6 Fuel Oil = $$1,645,571 \text{ gal/yr}$$ Electric Demand = $$1,143 \text{ kW/yr}$$ Energy Cost = $$$3,036,000 / yr$$ $$\left(656,537 \frac{mcf}{yr} \times \frac{\$3.53}{mcf}\right) + \left(1,645,571 \frac{gal}{yr} \times \frac{\$0.42}{gal}\right) +$$ $$\left(1,143 \frac{kW}{yr} \times \frac{\$8.97}{kW}\right) + \left(710,788 \frac{kWh}{yr} \times \frac{\$0.024}{kWh}\right) = \$3,036,027 \text{ use, } \$3,036,000$$ ### Proposed. The fuel-to-steam efficiency of a boiler is expected to improve about one percent for every 50°F rise in combustion air temperature entering the burner. The efficiency gain is, therefore, dependent on the amount of heat that can be recovered from the flue gas. The following table shows average flue gas temperatures for each boiler and current fuel-to-steam efficiencies. The flue gas temperatures were determined from operating log data included in Attachment 8.5. #### Average flue gas temperatures and fuel-to-steam efficiencies.	Boiler No.	Avg Flue Gas Temp (°F)
assumed that another 10°F of temperature distance between the floor and ceiling for a total of 20°F. Available efficiency gain = 0.4% $$(100^{\circ}F - 80^{\circ}F) \left(\frac{1\% \ eff}{50^{\circ}F}\right) = 0.4\%$$ Warm air is less dense than cool air. The forced draft fan will need to move a larger volume of the warm air into the boiler to get the same air to fuel mix needed for effective combustion. This will result in increased fan operating costs over the course of a year. A new fan is required because of limitations of the existing fan and motor, and the undersirable geometry of the double inlet fan. A new single inlet fan with a system volume of 33,000 cfm at 8 in. w.g. equates to a 63 BHP motor requirement. The fan's motor would be selected at 75 HP. Natural Gas = 175,989 mcf/yr $$\left(176,947 \frac{mcf}{vr} \right) \left(\frac{73.5\%}{73.5\% + 0.4\%} \right) = 175,989 \frac{mcf}{vr}$$ No. 6 Fuel Oil = $$1,281,661$$ gal/yr $$\left(1,288,293 \frac{gal}{yr}\right) \left(\frac{77.3\%}{77.3\% + 0.4\%}\right) = 1,282,661 \frac{gal}{yr}$$ Electric Demand = $$679 \text{ kW/yr}$$ Energy Cost = $$$1,175,800 / yr$$ $$\left(175,989 \ \frac{mcf}{yr} \ x \ \frac{\$3.53}{mcf} \ \right) + \left(1,281,661 \ \frac{gal}{yr} \ x \ \frac{\$0.42}{gal} \ \right) +$$ $$\left(679 \frac{kW}{yr} \times \frac{\$8.97}{kW}\right) + \left(425,310 \frac{kWh}{yr} \times \frac{\$0.024}{kWh}\right) = \$1,175,837 \text{ use, } \$1,175,800$$ **Construction** The estimated construction cost for this installation is \$58,000. **Cost.**	Material	\$24,000
from the implementation of this project will be \$950 (\$3,100 - \$2,150).	Savings Summary	Existing
3 can satisfy the load, and the number of days the peak load was between 130,000 lb/hr and 195,000 lb/hr. This data was collected from the boiler plant operating logs. # Peak Steam Requirements Number of Days	1994	Day/Month
Produced (mlbs/summer)	168,567	118,500
$$\left(640,613 \frac{mcf}{yr} \times \frac{\$3.53}{mcf}\right) + \left(1,638,860 \frac{gal}{yr} \times \frac{\$0.42}{gal}\right) = \$2,949,685 \text{ use, } \$2,950,000$$ We can look at the cost to produce one (1) lb of steam with gas or oil to determine which fuel is more cost effective.	Fuel	Fuel Heating Value
combination of the two rates yields an average brokered gas cost of \$0.325/therm (\$0.225 + \$0.10). The table on the following page displays 1994 gas usage with the expected brokered cost. -Entech Engineering, Inc. 6-75	Month	Usage ccf
UTILITY COMPANY REBATE $ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) $ 10035000. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL $ DISCOUNT DISCOUNTED $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) FUEL A. ELECT $ 7.03 199046. $ 1399293. 15.61 $ 21842970. B. DIST $ 4.25 0. $ 0. 17.56 $ 0. C. RESID $ 2.81 0. $ 0. 19.97 $ 0. D. NAT G $ 3.43 ****** $ -926505. 20.96 $ -19419540. E. COAL $.00 0. $ 0. 17.58 $ 0. F. LPG $.00 0. $ 0. $ 0. 16.12 $ 0. M. DEMAND SAVINGS $ 719304. 14.74 $ 10602540. N. TOTAL -71072. $ 1192093. $ 13025970. 3. NON ENERGY SAVINGS(+) / COST(-) ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) $ -457000. A. ANNUAL RECURRING (+/-) $ -6736180. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) ITEM d. TOTAL $ 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS (+) / COST (-) (3A2+3Bd4) $ -6736180. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 735093. 5. SIMPLE PAYBACK PERIOD (1G/4) 13.65 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) $ 6289793. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = .63 (IF < 1 PROJECT DOES NOT QUALIFY) ``` LIFE CYCLE COST ANALYSIS SUMMARY STUDY: DETRICK ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 .72 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): ### ECO S-2 NEW BOILER PLANT Existing. The median life of a steam producing steel watertube boiler is 30 years according to a 1978 survey conducted by American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE). Boilers No. 5 and No. 6 are about 10 years beyond this life expectancy. These boilers also have poor fuel to steam efficiencies compared to the newest boilers in the plant. Refer to Section 5.12 for more information about boiler efficiencies. #### BOILER CAPACITY, EFFICIENCY, AND AGE	Boiler No.	Capacity lb/hr
SUMMARY STUDY: DETRICK ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080 -8.77 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): ### ECO S-3 STEAM PRESSURE REDUCTION Existing. Steam currently leaves the boiler plant at 100 psi. The steam is distributed at three different pressures: 100 psi, 50 psi, and 10 psi. The lower pressures, 50 psi, and 10 psi, are achieved by using pressure reducing stations located in steam manholes and inside buildings. The maximum known steam pressure requirement on the base is for the autoclaves. The larger autoclaves need 60 psi steam to operate properly. At one time, Building 1412 needed 90 psi steam to operate a vacuum ejector. Operators at Building 1412 have informed us that this piece of equipment is no longer in service and their steam pressure requirement has been reduced to 60 psi. In 1994, approximately \$2,949,700 was spent for fuel used by the boilers to produce 100 psi steam. This figure does not include fuel consumed to bank the boilers. Natural Gas = $$640,613 \text{ mcf/yr}$$ Fuel Cost = $$$2,949,700 / yr$$ $$\left(640,613 \frac{mcf}{hr} \times \frac{\$3.53}{mcf}\right) + \left(1,638,860 \frac{gal}{yr} \times \frac{\$0.42}{gal}\right) = \$2,949,685 \text{ use, } \$2,949,700$$ Proposed. Lower the steam pressure leaving the boiler plant to 70 psi. This distribution pressure should allow 60 psi steam to be delivered to any point on the base and account for pressure losses in the distribution system. Lowering the steam pressure results in a decrease in steam temperature. When the steam is distributed at a lower temperature, the temperature difference between the steam piping and its surroundings will be less. Heat loss from the piping is reduced resulting in lower losses. In Section 5.10 of this report, we calculated expected losses in the distribution system due to heat transfer to be 83,468 mlb/yr. Expected losses are reduced to 80,457 mlb/yr when the losses are recalculated using the lower steam pressure and temperature. ### **Expected Distribution Losses**		Existing 100 psi, 330°F
Flash Steam	Over Ex	xisting
6	550 CRC Lab	8,100
----------------------	-----------	
------------	----------	
be the reasons. Assuming that the average monthly sewage should normally be around 6,000,000 gallons, the total for the year would then equate to 72,000,000. This in turn would relate to a heating cost of \$163,000 /yr. The reduction to these totals assumes that the practices noted above could be stopped, or changed to normal sewage by adding piping, lift stations, etc. Metered Sewage = $$72,000,000 \text{ gal/yr}$$ Steam Usage = $$37,000 \text{ mlb/yr}$$ $$\left(72,000,000 \frac{gal}{yr} \times 8.3 \frac{lbs}{gal} \times \frac{1 \ mlb}{1,000 \ lb} \times 0.0619 \frac{lb \ steam}{lb \ sewage}\right) = 36,991 \ use, \ 37,000 \frac{mlb}{yr}$$ Natural Gas = $$46,900 \text{ mcf/yr}$$ $$\left(\frac{37,000 \frac{mlb}{yr} \times \frac{1.003 \text{ } mmBtu}{mlb}}{0.768 \text{ } (eff)}\right) \times \frac{1 \text{ } mcf}{1.03 \text{ } mmBtu} = 46,914 \text{ } use, 46,900 \frac{mcf}{yr}$$ $$\left(46,900 \, \frac{mcf}{yr} \, x \, \$3.53\right) = \$165,557 \, use, \, \$165,600$$ Construction Cost. Estimating the costs associated with realizing these changes are difficult to predict. Refer to the discussion section for related information on construction costs. The cost associated with the 9.9 year payback period is \$373,000.	Material	\$134,000
DISCRETE PORTION NAME: P-1 TURBINE DRIVES ANALYSIS DATE: 07-19-95 ECONOMIC LIFE 20 YEARS PREPARED BY: ENTECH ENG. 1. INVESTMENT A. CONSTRUCTION COST $ 54000. B. SIOH $ 3000. C. DESIGN COST $ 3000. D. TOTAL COST (1A+1B+1C) $ 60000. E. SALVAGE VALUE OF EXISTING EQUIPMENT $ 0. F. PUBLIC UTILITY COMPANY REBATE $ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) $ 60000. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL $ DISCOUNT DISCOUNTED FUEL $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) 78463. 3. NON ENERGY SAVINGS(+) / COST(-) $ -1000. 14.74 $ -14740. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS (+) / COSTS (-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4) $ 0. d. TOTAL 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ -14740. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 2034. 5. SIMPLE PAYBACK PERIOD (1G/4) 29.50 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) $ 5782. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = .10 (IF < 1 PROJECT DOES NOT OUALIFY) ``` -8.28 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): ### ECO-P2 EFFICIENT MOTORS Existing. Presently, the Boiler Plant utilizes several large motors to provide combustion air and makeup water for its boilers. These motors are standard energy efficient type with efficiencies at approximately 91%. From the Electric Model in Section 5.14, Entech identified eight (8) motors as possibly being replaced with energy efficient motors. These motors typically operate for many hours and contribute to the Base electric demand. From the Electric Model and summarized below, the eight (8) motors have an annual electric demand of 1,350 kW and electric usage of 805,679 kWh. Based on these quantities, the annual cost to operate the motors is \$31,100. (Refer to Electric Model)	Motor	Size hp
\ \frac{\$8.97}{kW} + 207,814 \ kWh \ x \ \frac{\$0.024}{kWh}\right) = \$8,395 \ use, \ \$8,400$$ For the fan control, on Boiler No. 3, the variable speed motor will adjust air flow based on the load demand. Based on a review of the boiler logs, load demand in the winter is estimated to be at about 55% of capacity or 72,000 lb/hr out of 130,000 lb/hr during the time it operates. This boiler is operated approximately 5 months out of the year or 3,600 total hours. Reference information published by Buffalo Forge shows that generally a fan that operates like this one utilizing a damper for control at a constant speed can reduce its power consumption by 65% by using variable speed control at 55% capacity. It is estimated that this arrangement would have a demand of 204 kW and a usage of 105,276 kWh. Note, because of the nature of fan laws, diversity correction factors have been applied to best estimate the totals. The estimated costs would be \$4,400. $$(388 \ x \ .35 \ x \ 1.5 \ (demand \ diversity)) = 204 \ kw$$ $$(250,656 \ x \ .35 \ x \ 1.2 \ (usage \ diversity) \) \ 105,276 \ kWh$$ $$\left(204 \ kW \ x \ \frac{\$8.97}{kW} + 105,276 \ kWh \ x \ \frac{\$0.024}{kWh}\right) = \$4,356 \ use, \ \$4,400$$ # Construction Cost. The estimated costs for implementing variable speed drives as outlined is as follows. The cost for one 40 HP feedwater pump to be setup for variable speed control is \$56,000. While the cost for the 100 HP induced draft fan on Boiler No. 3 is \$77,000. Total construction costs for the two projects are \$133,000. #### (1) 40 HP Feedwater Pump	Material	\$29,000
\$1.57	\$3.22	\$4.79
.Gas)		B-7
\$58,000	\$3,900	